谣言检测常用数据集汇总

2024-03-10 03:40

本文主要是介绍谣言检测常用数据集汇总,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Pheme-R

获取地址:https://figshare.com/articles/dataset/PHEME_rumour_scheme_dataset_journalism_use_case/2068650
PHEME社交媒体谣言数据集:这些谣言与9条不同的突发新闻有关。它是为分析社交媒体谣言而创建的,并包含由谣言推文发起的推特对话;这些对话包括对那些谣言推文的回应。这些推文都经过注释,以获得支持、确定性和证据性。
数据集结构:
该数据集包含330个会话线程(297个英语线程,33个德语线程),每个线程都有一个文件夹,结构如下:
*source-tweets:这个文件夹包含一个json文件(源tweets)。
*reactions:这个文件夹包含所有tweets的json文件,通过回复参与对话。
*url-content:此文件夹包含从tweet指向的网页的内容。
*structure.json:该文件提供了对话的结构,从而更容易确定每个tweet的子tweet是什么,并通过将源tweet和回复放在一起来重建对话。
*retweets.json:该文件包含转发源tweet的tweet。
*who-following-whom.dat:该文件包含线程中正在关注其他人的用户。每行包含两个ID,表示具有第一个ID的用户跟随具有第二个ID的用户。注意,following不是对等的,因此,如果两个用户相互关注,那么它将被表示为两行,A B和B A。

*注释。该文件包含线程级别的手动注释,这对谣言特别有用,并包含以下字段:
** is_rumor:是谣言还是非谣言。
** category:描述谣言故事的标题,可用于与同一故事中的其他谣言分组。
** misinformation:0或1。它确定这个故事后来是否被证明是假的,在这种情况下设置为1,否则设置为0。
** true: 0或1。它确定该故事后来是否被证实为真的,在这种情况下设置为1,否则设置为0。
** is_turnaround: 0或1。如果一个帖子代表了谣言故事的转变,那么它就被标记为一个转折,要么在真实故事的情况下被证实,要么在虚假故事的情况下被揭穿。
** links:如果有,这包含了一个覆盖谣言故事的链接列表,其中包括链接的URL,媒体类型(社交媒体,新闻媒体或博客),以及它是反对,支持还是观察谣言。

在这330个对话中的4,842条推文的推文级别执行的注释可以在两个文件中找到:
*annotations/en-scheme-annotations.json (for the English threads)
*annotations/de-scheme-annotations.json (for the German threads)
每行包含一条tweet,带有事件、线程和tweet标识符,以及支持、确定性和证据性的注释。

Pheme

获取地址:https://figshare.com/articles/PHEME_dataset_for_Rumour_Detection_and_Veracity_Classification/6392078
该数据集是2016年发布的Pheme谣言和非谣言数据集(https://figshare.com/articles/PHEME_dataset_of_rumours_and_non-rumours/4010619)的延伸,它包含了与9个事件相关的谣言,每个谣言都被标注了其真实性值,即真、假或未验证。

Weibo、Twitter

获取地址:http://alt.qcri.org/~wgao/data/rumdect.zip

  • 推特数据
    Twitter.txt:该语料库总共包含992个标记事件。每行包含一个事件,其中包含相关推文的 ID:event_id、标签tweet_ids。对于标签,如果事件是谣言,则值为 1,否则为 0。请注意,由于 Twitter 数据的使用条款,我们无法发布推文的具体内容。用户可以通过 Twitter API 自行下载内容。
    Twitter_event_claims.txt:此文件提供每个事件的主要声明的内容。每行包含一个事件,其声明由event_id和声明内容组成。

  • 微博数据(Weibo.txt):该语料库共包含4664个标记事件。每行包含一个事件,其中包含相关帖子的 ID,格式为:event_id、标签post_ids。对于标签,如果事件是谣言,则值为 1,否则为 0。我们还以json格式发布所有帖子的内容,这些内容保存在./Weibo目录下,其中每个文件都命名为event_id.json,对应单个事件。

FakeNewsNet

获取地址:https://github.com/KaiDMML/FakeNewsNet
FakeNewsNet 包含 2 个数据集,这些数据集使用来自 Politifact 和 Gossipcop 的事件。

Twitter15、Twitter16

获取地址:https://www.dropbox.com/s/7ewzdrbelpmrnxu/rumdetect2017.zip?dl=0
数据集结构:
主目录包含两个 Twitter 数据集的目录:twitter15 和 twitter16。在每个目录中,都有:
-‘tree’ 子目录:此文件夹包含所有树文件,每个文件都对应给定源推文的树结构,其文件名由源推文 ID 指示。在树文件中,每行表示一条边,格式如下:
** 父节点 ->子节点
** 每个节点都以元组形式给出:[‘uid’, ‘tweet ID’, ‘post time delay (in minutes)’]

-label.txt 文件:此文件以如下格式提供树的真值标签:
** ‘label:源推文 ID’

-source_tweets.txt文件:此文件以如下格式提供树的源帖子内容:
** ‘源推文 ID t 源推文内容’

MR^2

SIGIR2023提出的新数据集,用于谣言检测的多模态多语言检索增强数据集。现有的数据集大多集中在单一的模态,为了将检索到的文本和图像作为更好的错误信息检测的证据。首先使用文章中的图像,通过反向图像搜索找到其他出现的图像。然后检索文本证据(即描述)并将其与帖子中的文本进行比较。同样地,使用文本来寻找其他图像作为视觉证据。包含从twitter和weibo上的中英文帖子。
获取地址:https://github.com/THU-BPM/MR2

数据集信息汇总

请添加图片描述

这篇关于谣言检测常用数据集汇总的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/792913

相关文章

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

Java对象转换的实现方式汇总

《Java对象转换的实现方式汇总》:本文主要介绍Java对象转换的多种实现方式,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java对象转换的多种实现方式1. 手动映射(Manual Mapping)2. Builder模式3. 工具类辅助映

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读