机器学习-可解释性机器学习:随机森林与fastshap的可视化模型解析

本文主要是介绍机器学习-可解释性机器学习:随机森林与fastshap的可视化模型解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

一、引言

机器学习在当今社会扮演着日益重要的角色,但黑盒模型的不可解释性限制了其应用范围。因此,可解释性机器学习成为研究热点,有助于提高模型的可信度和可接受性。本文旨在探讨随机森林和fastshap作为可视化模型解析工具的应用,以帮助解释机器学习模型的决策过程和关键特征。通过对这两种方法的深入研究,可以更好地理解模型背后的逻辑,为进一步的应用提供指导。

二、可解释性机器学习的概念

可解释性对于机器学习模型至关重要,因为它有助于用户理解模型的决策过程、预测结果以及特征的重要性。在许多关键应用领域,如医疗诊断、金融风险评估和自动驾驶等,模型的可解释性对于决策者和相关利益相关者至关重要。通过了解模型背后的逻辑和推理过程,可以提高对模型预测的信任度,并且能够更好地发现模型的局限性和潜在的偏差,从而更好地应对不确定性。

然而,现有的可解释性方法存在一些局限性,例如针对复杂模型的解释性较差、解释结果的一致性问题以及解释结果的可信度等。因此,需要进一步研究和发展新的方法来解决这些问题,以提高机器学习模型的可解释性和可信度。

接下来我们将介绍随机森林和FastSHAP作为可解释性机器学习的工具,探讨它们如何应对现有方法的局限性并提供更好的模型解释能力。

三、fastshap方法简介

3.1 FastSHAP的工作原理和优势

FastSHAP是一种用于解释机器学习模型的可解释性方法,它基于SHAP(Shapley Additive Explanations)值的概念,并通过优化算法提高了计算效率和可扩展性。

FastSHAP的工作原理是通过对特征重要性进行评估,解释模型对每个特征的贡献。它使用了Shapley值的概念,Shapley值是一种博弈论中用于衡量参与者对协作价值的贡献的方法。在FastSHAP中,Shapley值被用来衡量每个特征对预测结果的影响程度。

FastSHAP的优势有以下几点:

  • 「高效计算」:FastSHAP通过优化算法,有效地减少了计算SHAP值所需的时间和资源。相比传统的计算方法,FastSHAP能够在可接受的时间内解释复杂模型。
  • 「可扩展性」:FastSHAP适用于各种类型的机器学习模型,包括神经网络、随机森林等。它具有很好的通用性,可以广泛应用于不同领域和问题。
  • 「解释性准确性」:FastSHAP提供了对模型预测结果解释的准确性和可信度。通过计算每个特征的SHAP值,可以了解到每个特征对预测结果的贡献程度,从而更好地理解模型的决策过程和关键特征。

3.2 FastSHAP在可解释性中的作用

在可解释性机器学习中,FastSHAP发挥着重要的作用。它可以帮助我们更好地了解机器学习模型的内部机制,解释其预测结果,并为决策者提供有针对性的洞察和决策依据。通过使用FastSHAP,我们能够提高模型的可解释性和可信度,从而推动机器学习在实际应用中的更广泛使用。

四、可视化模型解析

4.1 随机森林和FastSHAP模型解析思路

  1. 训练随机森林模型:首先,通过训练数据训练一个随机森林模型。
  2. 解释模型预测过程:使用FastSHAP方法来解释随机森林模型的预测过程。FastSHAP可以计算每个特征对于每个预测结果的SHAP值,从而揭示模型对每个特征的重要性和影响程度。
  3. 可视化解释结果:利用可视化工具,将FastSHAP计算得到的SHAP值可视化展示。这样可以直观地展示每个特征对于模型预测结果的影响,帮助用户理解模型的决策过程和关键特征。

4.2 可视化工具解释随机森林模型的预测过程和特征重要性

利用可视化工具解释随机森林模型的预测过程和特征重要性的步骤如下:

  1. 计算SHAP值:使用FastSHAP方法计算随机森林模型对于测试数据集中每个样本的SHAP值,得到每个特征对于每个样本的影响程度。
  2. 可视化特征重要性:通过柱状图或热力图等方式,将各个特征的SHAP值可视化展示,以展示它们对于模型预测的重要性程度。
  3. 可视化预测过程:选取几个样本,展示它们的特征取值和对应的SHAP值,以说明模型是如何基于这些特征值进行预测的

五、实例演示

  • 「数据集准备」
library(survival)
head(gbsg)

结果展示:

   pid age meno size grade nodes pgr er hormon rfstime status
1  132  49    0   18     2     2   0  0      0    1838      0
2 1575  55    1   20     3    16   0  0      0     403      1
3 1140  56    1   40     3     3   0  0      0    1603      0
4  769  45    0   25     3     1   0  4      0     177      0
5  130  65    1   30     2     5   0 36      1    1855      0
6 1642  48    0   52     2    11   0  0      0     842      1
  • 「示例数据集介绍」
> str(gbsg)
'data.frame':   686 obs. of  10 variables:
 $ age    : int  49 55 56 45 65 48 48 37 67 45 ...
 $ meno   : int  0 1 1 0 1 0 0 0 1 0 ...
 $ size   : int  18 20 40 25 30 52 21 20 20 30 ...
 $ grade  : int  2 3 3 3 2 2 3 2 2 2 ...
 $ nodes  : int  2 16 3 1 5 11 8 9 1 1 ...
 $ pgr    : int  0 0 0 0 0 0 0 0 0 0 ...
 $ er     : int  0 0 0 4 36 0 0 0 0 0 ...
 $ hormon : int  0 0 0 0 1 0 0 1 1 0 ...
 $ rfstime: int  1838 403 1603 177 1855 842 293 42 564 1093 ...
 $ status : Factor w/ 2 levels "0","1"1 2 1 1 1 2 2 1 2 2 ...

age:患者年龄
meno:更年期状态(0表示未更年期,1表示已更年期)
size:肿瘤大小
grade:肿瘤分级
nodes:受累淋巴结数量
pgr:孕激素受体表达水平
er:雌激素受体表达水平
hormon:激素治疗(0表示否,1表示是)
rfstime:复发或死亡时间(以天为单位)
status:事件状态(0表示被截尾,1表示事件发生)
  • 「划分训练集和测试集」
# 划分训练集和测试集
set.seed(123)
data <- gbsg[,c(-1)]


# 划分训练集和测试集
set.seed(123)
train_indices <- sample(x = 1:nrow(data), size = 0.7 * nrow(data), replace = FALSE)
test_indices <- sample(setdiff(1:nrow(data), train_indices), size = 0.3 * nrow(data), replace = FALSE)

train_data <- data[train_indices, ]
test_data <- data[test_indices, ]
  • 「模型拟合」
library(randomForest)
rf <- randomForest(status~., data=train_data)
  • 「模型评估」
library(pROC)
# 获取模型预测的概率
pred_prob <- predict(rf, newdata = test_data, type = "class")

# 计算真阳性率和假阳性率
roc <- pROC::roc(test_data$status, pred_prob)

# 绘制ROC曲线
plot(roc, main = "ROC Curve", print.auc = TRUE, auc.polygon = TRUE, grid = TRUE, legacy.axes = TRUE,col="blue")

# 绘制特征重要性图
varImpPlot(rf)
  • 「shap分析」
library(fastshap)
shap <- explain(rf,X=train_data[,-10],nsim=10,
        pred_wrapper = function(model,newdata){
           predict(rf, newdata = newdata, type = "class")
        })

library(magrittr)
library(tidyverse)
shap_handle <- shap %>% as.data.frame() %>% mutate(id=1:n()) %>% pivot_longer(cols = -(ncol(train_data[,-10])+1),values_to="shap"# 长宽数据转换
shap_handle

data2 <- train_data %>% mutate(id=1:n()) %>% pivot_longer(cols = -(ncol(train_data[,-10])+1))

# 开始画图
shap_scale <- shap_handle %>% rename("feature"
="name")%>%
group_by(feature)%>%
mutate(value=(value-min(value))/(max(value)-min(value)))

shap_scale <- shap_handle %>%
left_join(data2)%>%
rename("feature"
="name")%>%
group_by(feature)%>%
mutate(value=(value-min(value))/(max(value)-min(value))) %>% sample_n(200)


ggplot(data=shap_scale, aes(x=shap, y=feature, color=value)) +
  geom_jitter(size=2, height=0.1, width=0) +
  scale_color_gradient(low="#FFCC33", high="#6600CC", breaks=c(01), labels=c("Low""High"), 
                       guide=guide_colorbar(barwidth=2, barheight=30), 
                       name="Feature value"
                       aesthetics = c("color")) +
  theme_bw()

结果展示:

# A tibble: 4,320 × 3
      id name       value
   <int> <chr>      <dbl>
 1     1 age     -0.00320
 2     1 meno    -0.00201
 3     1 size    -0.0711 
 4     1 grade   -0.0336 
 5     1 nodes   -0.126  
 6     1 pgr     -0.0308 
 7     1 er       0.0160 
 8     1 hormon   0.00211
 9     1 rfstime -0.189  
10     2 age      0.00561
# ℹ 4,310 more rows
# ℹ Use `print(n = ...)` to see more rows

六、结论

随机森林和FastSHAP在可解释性机器学习中具有重要作用,并有着许多优势和应用前景。以下是它们的优势以及在可解释性机器学习中的应用前景的总结:

  • 「随机森林的优势」

  1. 随机森林是一种集成学习方法,能够处理高维数据和大规模数据集,具有很好的准确性和鲁棒性。 随机森林可以输出特征重要性,帮助用户理解模型的决策过程和关键特征。
  2. 随机森林对于缺失值和异常值具有较好的容忍性,不需要对数据进行过多的预处理。
  • 「FastSHAP的优势」

  1. astSHAP通过优化算法提高了计算效率和可扩展性,适用于各种类型的机器学习模型。
  2. FastSHAP提供了对模型预测结果解释的准确性和可信度,帮助用户深入理解模型的决策过程。

在可解释性机器学习中,随机森林和FastSHAP的结合可以帮助用户更好地理解复杂模型的预测过程、特征重要性和决策依据,从而提高模型的可解释性和可信度。未来在可解释性机器学习领域的研究方向和发展趋势可能包括:

  1. 提高解释性方法的效率和可扩展性,使其能够适用于更复杂的模型和大规模数据集。
  2. 探索新的解释性方法,结合人类可理解的解释形式,使得解释更加直观和易于理解。
  3. 深入研究模型的不确定性估计和可信度评估,为决策者提供更全面的信息和决策支持。
  4. 推动可解释性机器学习在实际应用中的广泛应用,促进人工智能技术的可持续发展和应用落地。

随机森林和FastSHAP作为可解释性机器学习领域的重要工具和方法,将继续发挥重要作用,并在未来的研究和应用中持续展现出潜力和价值。

这篇关于机器学习-可解释性机器学习:随机森林与fastshap的可视化模型解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/789567

相关文章

Java中Redisson 的原理深度解析

《Java中Redisson的原理深度解析》Redisson是一个高性能的Redis客户端,它通过将Redis数据结构映射为Java对象和分布式对象,实现了在Java应用中方便地使用Redis,本文... 目录前言一、核心设计理念二、核心架构与通信层1. 基于 Netty 的异步非阻塞通信2. 编解码器三、

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java 虚拟线程的创建与使用深度解析

《Java虚拟线程的创建与使用深度解析》虚拟线程是Java19中以预览特性形式引入,Java21起正式发布的轻量级线程,本文给大家介绍Java虚拟线程的创建与使用,感兴趣的朋友一起看看吧... 目录一、虚拟线程简介1.1 什么是虚拟线程?1.2 为什么需要虚拟线程?二、虚拟线程与平台线程对比代码对比示例:三

一文解析C#中的StringSplitOptions枚举

《一文解析C#中的StringSplitOptions枚举》StringSplitOptions是C#中的一个枚举类型,用于控制string.Split()方法分割字符串时的行为,核心作用是处理分割后... 目录C#的StringSplitOptions枚举1.StringSplitOptions枚举的常用

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

MyBatis延迟加载与多级缓存全解析

《MyBatis延迟加载与多级缓存全解析》文章介绍MyBatis的延迟加载与多级缓存机制,延迟加载按需加载关联数据提升性能,一级缓存会话级默认开启,二级缓存工厂级支持跨会话共享,增删改操作会清空对应缓... 目录MyBATis延迟加载策略一对多示例一对多示例MyBatis框架的缓存一级缓存二级缓存MyBat

前端缓存策略的自解方案全解析

《前端缓存策略的自解方案全解析》缓存从来都是前端的一个痛点,很多前端搞不清楚缓存到底是何物,:本文主要介绍前端缓存的自解方案,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、为什么“清缓存”成了技术圈的梗二、先给缓存“把个脉”:浏览器到底缓存了谁?三、设计思路:把“发版”做成“自愈”四、代码

Java集合之Iterator迭代器实现代码解析

《Java集合之Iterator迭代器实现代码解析》迭代器Iterator是Java集合框架中的一个核心接口,位于java.util包下,它定义了一种标准的元素访问机制,为各种集合类型提供了一种统一的... 目录一、什么是Iterator二、Iterator的核心方法三、基本使用示例四、Iterator的工

Java JDK Validation 注解解析与使用方法验证

《JavaJDKValidation注解解析与使用方法验证》JakartaValidation提供了一种声明式、标准化的方式来验证Java对象,与框架无关,可以方便地集成到各种Java应用中,... 目录核心概念1. 主要注解基本约束注解其他常用注解2. 核心接口使用方法1. 基本使用添加依赖 (Maven

Java中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例解析

《Java中的分布式系统开发基于Zookeeper与Dubbo的应用案例解析》本文将通过实际案例,带你走进基于Zookeeper与Dubbo的分布式系统开发,本文通过实例代码给大家介绍的非常详... 目录Java 中的分布式系统开发基于 Zookeeper 与 Dubbo 的应用案例一、分布式系统中的挑战二