鲸鱼算法优化LSTM超参数-神经元个数-dropout-batch_size

2024-03-08 23:20

本文主要是介绍鲸鱼算法优化LSTM超参数-神经元个数-dropout-batch_size,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、摘要

本文主要讲解:使用鲸鱼算法优化LSTM超参数-神经元个数-dropout-batch_size
主要思路:

  1. 鲸鱼算法 Parameters : 迭代次数、鲸鱼的维度、鲸鱼的数量, 参数的上限,参数的下限
  2. LSTM Parameters 神经网络第一层神经元个数、神经网络第二层神经元个数、dropout比率、batch_size
  3. 开始搜索:初始化所鲸鱼的位置、迭代寻优、返回超出搜索空间边界的搜索代理、计算每个搜索代理的目标函数、更新 Alpha, Beta, and Delta
  4. 训练模型,使用鲸鱼算法找到的最好的全局最优参数
  5. plt.show()

2、数据介绍

zgpa_train.csv
DIANCHI.csv

需要数据的话去我其他文章的评论区
可接受定制

3、相关技术

WOA算法设计的既精妙又富有特色,它源于对自然界中座头鲸群体狩猎行为的模拟, 通过鲸鱼群体搜索、包围、追捕和攻击猎物等过程实现优时化搜索的目的。在原始的WOA中,提供了包围猎物,螺旋气泡、寻找猎物的数学模型。
鲸鱼优化算法
在这里插入图片描述
PS:如陷入局部最优建议修改参数的上下限或者修改鲸鱼寻优的速度

4、完整代码和步骤

代码输出如下:

此程序运行代码版本为:

tensorflow==2.5.0
numpy==1.19.5
keras==2.6.0
matplotlib==3.5.2

在这里插入图片描述

主运行程序入口

import math
import osimport matplotlib.pyplot as plt
import numpy as np
import pandas as pd
from sklearn.metrics import mean_squared_error
from sklearn.preprocessing import MinMaxScaler
from tensorflow.python.keras.callbacks import EarlyStopping
from tensorflow.python.keras.layers import Dense, Dropout, LSTM
from tensorflow.python.keras.layers.core import Activation
from tensorflow.python.keras.models import Sequentialos.chdir(r'D:\项目\PSO-LSTM\具体需求')
'''
灰狼算法优化LSTM
'''
plt.rcParams['font.sans-serif'] = ['SimHei']  # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False  # 用来正常显示负号def creat_dataset(dataset, look_back):dataX, dataY = [], []for i in range(len(dataset) - look_back - 1):a = dataset[i: (i + look_back)]dataX.append(a)dataY.append(dataset[i + look_back])return np.array(dataX), np.array(dataY)dataframe = pd.read_csv('zgpa_train.csv', header=0, parse_dates=[0], index_col=0, usecols=[0, 5], squeeze=True)
dataset = dataframe.values
data = pd.read_csv('DIANCHI.csv', header=0)
z = data['fazhi']scaler = MinMaxScaler(feature_range=(0, 1))
dataset = scaler.fit_transform(dataset.reshape(-1, 1))train_size = int(len(dataset) * 0.8)
test_size = len(dataset) - train_size
train, test = dataset[0: train_size], dataset[train_size: len(dataset)]
look_back = 10
trainX, trainY = creat_dataset(train, look_back)
testX, testY = creat_dataset(test, look_back)def build_model(neurons1, neurons2, dropout):X_train, y_train = trainX, trainYX_test, y_test = testX, testYmodel = Sequential()model.add(LSTM(units=neurons1, return_sequences=True, input_shape=(10, 1)))model.add(LSTM(units=neurons2, return_sequences=True))model.add(LSTM(111, return_sequences=False))model.add(Dropout(dropout))model.add(Dense(55))model.add(Dense(units=1))model.add(Activation('relu'))model.compile(loss='mean_squared_error', optimizer='Adam')return model, X_train, y_train, X_test, y_testdef training(X):neurons1 = int(X[0])neurons2 = int(X[1])dropout = round(X[2], 6)batch_size = int(X[3])print([neurons1,neurons2,dropout,batch_size])model, X_train, y_train, X_test, y_test = build_model(neurons1, neurons2, dropout)model.fit(X_train,y_train,batch_size=batch_size,epochs=10,validation_split=0.1,verbose=0,callbacks=[EarlyStopping(monitor='val_loss', patience=22, restore_best_weights=True)])pred = model.predict(X_test)temp_mse = mean_squared_error(y_test, pred)print(temp_mse)return temp_mseclass woa():# 初始化def __init__(self, LB, UB, dim=4, b=1, whale_num=20, max_iter=500):self.LB = LBself.UB = UBself.dim = dimself.whale_num = whale_numself.max_iter = max_iterself.b = b# Initialize the locations of whaleself.X = np.random.uniform(0, 1, (whale_num, dim)) * (UB - LB) + LBself.gBest_score = np.infself.gBest_curve = np.zeros(max_iter)self.gBest_X = np.zeros(dim)# 适应度函数 max_depth,min_samples_split,min_samples_leaf,max_leaf_nodesdef fitFunc(self, para):# 建立模型mse = training(para)return mse# 优化模块def opt(self):t = 0while t < self.max_iter:print('At iteration: ' + str(t))for i in range(self.whale_num):# 防止X溢出self.X[i, :] = np.clip(self.X[i, :], self.LB, self.UB)  # Check boundriesfitness = self.fitFunc(self.X[i, :])# Update the gBest_score and gBest_Xif fitness <= self.gBest_score:self.gBest_score = fitnessself.gBest_X = self.X[i, :].copy()print('self.gBest_score: ', self.gBest_score)print('self.gBest_X: ', self.gBest_X)a = 2 * (self.max_iter - t) / self.max_iter# Update the location of whalesfor i in range(self.whale_num):p = np.random.uniform()R1 = np.random.uniform()R2 = np.random.uniform()A = 2 * a * R1 - aC = 2 * R2l = 2 * np.random.uniform() - 1# 如果随机值大于0.5 就按以下算法更新Xif p >= 0.5:D = abs(self.gBest_X - self.X[i, :])self.X[i, :] = D * np.exp(self.b * l) * np.cos(2 * np.pi * l) + self.gBest_Xelse:# 如果随机值小于0.5 就按以下算法更新Xif abs(A) < 1:D = abs(C * self.gBest_X - self.X[i, :])self.X[i, :] = self.gBest_X - A * Delse:rand_index = np.random.randint(low=0, high=self.whale_num)X_rand = self.X[rand_index, :]D = abs(C * X_rand - self.X[i, :])self.X[i, :] = X_rand - A * Dself.gBest_curve[t] = self.gBest_scoret += 1return self.gBest_curve, self.gBest_Xif __name__ == '__main__':'''神经网络第一层神经元个数神经网络第二层神经元个数dropout比率batch_size'''# ===========主程序================Max_iter = 3  # 迭代次数dim = 4  # 鲸鱼的维度SearchAgents_no = 2  # 寻值的鲸鱼的数量# 参数的上限UB = np.array([20, 100, 0.01, 36])# 参数的下限LB = np.array([5, 20, 0.00001, 5])# best_params is [2.e+02 3.e+02 1.e-03 1.e+00]fitnessCurve, para = woa(LB, UB, dim=dim, whale_num=SearchAgents_no, max_iter=Max_iter).opt()print('best_params is ', para)# 训练模型  使用PSO找到的最好的神经元个数neurons1 = int(para[0])neurons2 = int(para[1])dropout = para[2]batch_size = int(para[3])model, X_train, y_train, X_test, y_test = build_model(neurons1, neurons2, dropout)history = model.fit(X_train, y_train, epochs=100, batch_size=batch_size, validation_split=0.2, verbose=1,callbacks=[EarlyStopping(monitor='val_loss', patience=29, restore_best_weights=True)])trainPredict = model.predict(trainX)testPredict = model.predict(testX)trainPredict = scaler.inverse_transform(trainPredict)trainY = scaler.inverse_transform(trainY)testPredict = scaler.inverse_transform(testPredict)testY = scaler.inverse_transform(testY)trainScore = math.sqrt(mean_squared_error(trainY, trainPredict[:, 0]))# print('Train Score %.2f RMSE' %(trainScore))testScore = math.sqrt(mean_squared_error(testY, testPredict[:, 0]))# print('Test Score %.2f RMSE' %(trainScore))trainPredictPlot = np.empty_like(dataset)trainPredictPlot[:] = np.nantrainPredictPlot = np.reshape(trainPredictPlot, (dataset.shape[0], 1))trainPredictPlot[look_back: len(trainPredict) + look_back, :] = trainPredicttestPredictPlot = np.empty_like(dataset)testPredictPlot[:] = np.nantestPredictPlot = np.reshape(testPredictPlot, (dataset.shape[0], 1))testPredictPlot[len(trainPredict) + (look_back * 2) + 1: len(dataset) - 1, :] = testPredictplt.plot(history.history['loss'])plt.title('model loss')plt.ylabel('loss')plt.xlabel('epoch')plt.show()fig2 = plt.figure(figsize=(20, 15))plt.rcParams['font.family'] = ['STFangsong']ax = plt.subplot(222)plt.plot(scaler.inverse_transform(dataset), 'b-', label='实验数据')plt.plot(trainPredictPlot, 'r', label='训练数据')plt.plot(testPredictPlot, 'g', label='预测数据')plt.plot(z, 'k-', label='寿命阀值RUL')plt.ylabel('capacity', fontsize=20)plt.xlabel('cycle', fontsize=20)plt.legend()name = 'neurons1_' + str(neurons1) + 'neurons2_' + str(neurons2) + '_dropout' + str(dropout) + '_batch_size' + str(batch_size)plt.savefig('D:\项目\PSO-LSTM\具体需求\photo\\' + name + '.png')plt.show()

这篇关于鲸鱼算法优化LSTM超参数-神经元个数-dropout-batch_size的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/788750

相关文章

SpringBoot请求参数接收控制指南分享

《SpringBoot请求参数接收控制指南分享》:本文主要介绍SpringBoot请求参数接收控制指南,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录Spring Boot 请求参数接收控制指南1. 概述2. 有注解时参数接收方式对比3. 无注解时接收参数默认位置

SpringBoot项目中报错The field screenShot exceeds its maximum permitted size of 1048576 bytes.的问题及解决

《SpringBoot项目中报错ThefieldscreenShotexceedsitsmaximumpermittedsizeof1048576bytes.的问题及解决》这篇文章... 目录项目场景问题描述原因分析解决方案总结项目场景javascript提示:项目相关背景:项目场景:基于Spring

Python使用getopt处理命令行参数示例解析(最佳实践)

《Python使用getopt处理命令行参数示例解析(最佳实践)》getopt模块是Python标准库中一个简单但强大的命令行参数处理工具,它特别适合那些需要快速实现基本命令行参数解析的场景,或者需要... 目录为什么需要处理命令行参数?getopt模块基础实际应用示例与其他参数处理方式的比较常见问http

MySQL索引的优化之LIKE模糊查询功能实现

《MySQL索引的优化之LIKE模糊查询功能实现》:本文主要介绍MySQL索引的优化之LIKE模糊查询功能实现,本文通过示例代码给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前缀匹配优化二、后缀匹配优化三、中间匹配优化四、覆盖索引优化五、减少查询范围六、避免通配符开头七、使用外部搜索引擎八、分

Linux内核参数配置与验证详细指南

《Linux内核参数配置与验证详细指南》在Linux系统运维和性能优化中,内核参数(sysctl)的配置至关重要,本文主要来聊聊如何配置与验证这些Linux内核参数,希望对大家有一定的帮助... 目录1. 引言2. 内核参数的作用3. 如何设置内核参数3.1 临时设置(重启失效)3.2 永久设置(重启仍生效

SpringMVC获取请求参数的方法

《SpringMVC获取请求参数的方法》:本文主要介绍SpringMVC获取请求参数的方法,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友可以参考下... 目录1、通过ServletAPI获取2、通过控制器方法的形参获取请求参数3、@RequestParam4、@

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

SpringBoot利用@Validated注解优雅实现参数校验

《SpringBoot利用@Validated注解优雅实现参数校验》在开发Web应用时,用户输入的合法性校验是保障系统稳定性的基础,​SpringBoot的@Validated注解提供了一种更优雅的解... 目录​一、为什么需要参数校验二、Validated 的核心用法​1. 基础校验2. php分组校验3

Python通过模块化开发优化代码的技巧分享

《Python通过模块化开发优化代码的技巧分享》模块化开发就是把代码拆成一个个“零件”,该封装封装,该拆分拆分,下面小编就来和大家简单聊聊python如何用模块化开发进行代码优化吧... 目录什么是模块化开发如何拆分代码改进版:拆分成模块让模块更强大:使用 __init__.py你一定会遇到的问题模www.