Threejs用切线实现模型沿着轨道行驶

2024-03-08 14:20

本文主要是介绍Threejs用切线实现模型沿着轨道行驶,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

        这次讲一个经常遇到的使用场景,让模型沿着轨迹运动,这个场景需要解决两个问题,第一是让模型沿着轨迹运动,第二是在沿着轨迹运动的同时,要保持模型的头部也时刻保持前方,而不是单纯的只是更新模型位置。

        还是先创建一个场景,添加相机,灯光,渲染器等,然后需要创建一个轨迹,这里用CatmullRomCurve3创建一个3维曲线,这个的好处是等会可以将此曲线拆解成多个同等份的点,因为我们需要不断更新模型在此曲线的位置,实际上就是不停的切换此曲线上连接的多个点,来实现位置的不断更新。

        首先根据四个点创建曲线,并将曲线分解为多个点,再用这些点绘制成一条曲线并加入到场景中,方便后面观察模型的运动轨迹。

 this.cameraCurve = new THREE.CatmullRomCurve3([new THREE.Vector3(-300, 40, 200),new THREE.Vector3(300, 40, 200),new THREE.Vector3(300, 40, -200),new THREE.Vector3(-300, 40, -200),],true);//参考路径上取1000个点,每个点上添加蓝色小球const pathPoints = this.cameraCurve.getPoints(this.pathIndex);//绘制一条路径参考线与上面的线重合,方便查看小车的行动轨迹const geometry = new THREE.BufferGeometry().setFromPoints(pathPoints);const material = new THREE.LineBasicMaterial({ color: '#000000', linewidth: 1, });//设置线条的颜色和宽度const curveObject = new THREE.Line(geometry, material);scene.add(curveObject);

此时场景中就出现一条曲线,作为模型运动的轨迹,

接着,需要在场景中添加一个模型,我这添加一个agv车,更方便观察车的车头方向,因为是外部模型需要加载GLTFLoader,缩放到适合的大小,并将车的位置放在曲线的第一个点位置,防止在运动前突然闪现到开始运动的点开始运动。

 //在场景中加载一个agv小车,并将agv小车放在曲线的第一个点上const loader = new GLTFLoader()loader.load("/static/model/agv.gltf", (gltf) => {this.agv = gltf.scene;this.agv.position.set(pathPoints[0].x, pathPoints[0].y, pathPoints[0].z)   // 模型位置this.agv.scale.set(0.1,0.1,0.1)scene.add(this.agv)   // 加入场景})

曲线和车都加好了,需要开始设置动画了,也是最关键的部分,运动的部分比较简单,因为获取到了曲线的多个连续点,只需要不断地更新车的位置到每个点就好了,保持车头方向需要先获取车所在点向量的切线,位置向量和切线向量相加即为所需朝向的点向量。

 if (this.agv) {// 判断agv加载完成后,开始不断更新agv的位置const sphereCurveIndex = this.pathIndex / 1000; // //取相参考径上当前点的坐标,取值0~1const positionVec = this.cameraCurve.getPointAt(sphereCurveIndex);//获取曲线上位置的点,传值为0-1的小数表示整个线段的位置this.agv.position.set( positionVec.x, positionVec.y, positionVec.z);//设置新的agv位置const tangent = this.cameraCurve.getTangentAt(sphereCurveIndex); // 返回一个点t在曲线上位置向量的法线向量(getTangentAt是返回曲线上某个点的切线)const lookAtVec = tangent.add(positionVec);// 位置向量和切线向量相加即为所需朝向的点向量this.agv.lookAt(lookAtVec);//设置agv的模型朝向为切线的方向}

完整的代码如下:

<template><div><div id="container"></div></div>
</template><script>
import * as THREE from 'three'
import {OrbitControls} from "three/addons/controls/OrbitControls";
import {GLTFLoader} from "three/addons/loaders/GLTFLoader";let scene;
export default {name: "agv-single",data() {return{camera:null,cameraCurve:null,renderer:null,container:null,controls:null,pathIndex:1000,//小车的运动轨迹点索引agv:null}},methods:{initScene(){scene = new THREE.Scene();},initCamera(){this.camera = new THREE.PerspectiveCamera(45, window.innerWidth / window.innerHeight, 0.1, 10000);this.camera.position.set(500,500,500);},initLight(){//添加两个平行光const directionalLight1 = new THREE.DirectionalLight(0xffffff, 1.5);directionalLight1.position.set(-300,-300,600)scene.add(directionalLight1);const directionalLight2 = new THREE.DirectionalLight(0xffffff, 1.5);directionalLight2.position.set(600,200,600)scene.add(directionalLight2);},initRound(){//通过CatmullRomCurve3连接4个点绘制一条曲线,且闭合this.cameraCurve = new THREE.CatmullRomCurve3([new THREE.Vector3(-300, 40, 200),new THREE.Vector3(300, 40, 200),new THREE.Vector3(300, 40, -200),new THREE.Vector3(-300, 40, -200),],true);//参考路径上取1000个点,每个点上添加蓝色小球const pathPoints = this.cameraCurve.getPoints(this.pathIndex);//绘制一条路径参考线与上面的线重合,方便查看小车的行动轨迹const geometry = new THREE.BufferGeometry().setFromPoints(pathPoints);const material = new THREE.LineBasicMaterial({ color: '#000000', linewidth: 1, });//设置线条的颜色和宽度const curveObject = new THREE.Line(geometry, material);scene.add(curveObject);//在场景中加载一个agv小车,并将agv小车放在曲线的第一个点上const loader = new GLTFLoader()loader.load("/static/model/agv.gltf", (gltf) => {this.agv = gltf.scene;this.agv.position.set(pathPoints[0].x, pathPoints[0].y, pathPoints[0].z)   // 模型位置this.agv.scale.set(0.1,0.1,0.1)scene.add(this.agv)   // 加入场景})},initRenderer(){this.renderer = new THREE.WebGLRenderer({ antialias: true });this.container = document.getElementById("container")this.renderer.setSize(this.container.clientWidth, this.container.clientHeight);this.renderer.setClearColor('#AAAAAA', 1.0);this.container.appendChild(this.renderer.domElement);},initControl(){this.controls = new OrbitControls(this.camera, this.renderer.domElement);this.controls.enableDamping = true;this.controls.maxPolarAngle = Math.PI / 2.2;      // // 最大角度},initAnimate() {//参考路径的索引在1001~0中往复减少以实现小车循环行驶if (this.pathIndex === 0) {this.pathIndex = 1001;}this.pathIndex -= 1;if (this.agv) {// 判断agv加载完成后,开始不断更新agv的位置const sphereCurveIndex = this.pathIndex / 1000; // //取相参考径上当前点的坐标,取值0~1const positionVec = this.cameraCurve.getPointAt(sphereCurveIndex);//获取曲线上位置的点,传值为0-1的小数表示整个线段的位置this.agv.position.set( positionVec.x, positionVec.y, positionVec.z);//设置新的agv位置const tangent = this.cameraCurve.getTangentAt(sphereCurveIndex); // 返回一个点t在曲线上位置向量的法线向量(getTangentAt是返回曲线上某个点的切线)const lookAtVec = tangent.add(positionVec);// 位置向量和切线向量相加即为所需朝向的点向量this.agv.lookAt(lookAtVec);//设置agv的模型朝向为切线的方向}requestAnimationFrame(this.initAnimate);this.renderer.render(scene, this.camera);},initPage(){this.initScene();this.initCamera();this.initLight();this.initRenderer();this.initControl();this.initRound();this.initAnimate();}},mounted() {this.initPage()}
}
</script><style scoped>
#container{position: absolute;width:100%;height:100%;overflow: hidden;
}</style>

效果如下:

模型沿着曲线运动

这篇关于Threejs用切线实现模型沿着轨道行驶的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/787370

相关文章

C++中零拷贝的多种实现方式

《C++中零拷贝的多种实现方式》本文主要介绍了C++中零拷贝的实现示例,旨在在减少数据在内存中的不必要复制,从而提高程序性能、降低内存使用并减少CPU消耗,零拷贝技术通过多种方式实现,下面就来了解一下... 目录一、C++中零拷贝技术的核心概念二、std::string_view 简介三、std::stri

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python实现精准提取 PDF中的文本,表格与图片

《Python实现精准提取PDF中的文本,表格与图片》在实际的系统开发中,处理PDF文件不仅限于读取整页文本,还有提取文档中的表格数据,图片或特定区域的内容,下面我们来看看如何使用Python实... 目录安装 python 库提取 PDF 文本内容:获取整页文本与指定区域内容获取页面上的所有文本内容获取

基于Python实现一个Windows Tree命令工具

《基于Python实现一个WindowsTree命令工具》今天想要在Windows平台的CMD命令终端窗口中使用像Linux下的tree命令,打印一下目录结构层级树,然而还真有tree命令,但是发现... 目录引言实现代码使用说明可用选项示例用法功能特点添加到环境变量方法一:创建批处理文件并添加到PATH1

Java使用HttpClient实现图片下载与本地保存功能

《Java使用HttpClient实现图片下载与本地保存功能》在当今数字化时代,网络资源的获取与处理已成为软件开发中的常见需求,其中,图片作为网络上最常见的资源之一,其下载与保存功能在许多应用场景中都... 目录引言一、Apache HttpClient简介二、技术栈与环境准备三、实现图片下载与保存功能1.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

Nexus安装和启动的实现教程

《Nexus安装和启动的实现教程》:本文主要介绍Nexus安装和启动的实现教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Nexus下载二、Nexus安装和启动三、关闭Nexus总结一、Nexus下载官方下载链接:DownloadWindows系统根

SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程

《SpringBoot集成LiteFlow实现轻量级工作流引擎的详细过程》LiteFlow是一款专注于逻辑驱动流程编排的轻量级框架,它以组件化方式快速构建和执行业务流程,有效解耦复杂业务逻辑,下面给大... 目录一、基础概念1.1 组件(Component)1.2 规则(Rule)1.3 上下文(Conte

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句