算法打卡day11|栈与队列篇03|Leetcode 239. 滑动窗口最大值、347.前 K 个高频元素

本文主要是介绍算法打卡day11|栈与队列篇03|Leetcode 239. 滑动窗口最大值、347.前 K 个高频元素,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

小顶堆和大顶堆

小顶堆(Min Heap)和大顶堆(Max Heap)是两种特殊的完全二叉树,它们遵循特定的堆属性,即父节点的值总是小于或等于(小顶堆)或者大于或等于(大顶堆)其子节点的值。这种结构使得堆的根节点包含了最大值或者最小值,这使得堆在很多算法中非常有用,尤其是在优先级队列的实现上。

小顶堆(Min Heap)
在小顶堆中,每个非叶子节点的值都必须大于或等于其子节点的值。这意味着堆的根节点包含了所有节点中的最小值。小顶堆通常用于那些需要快速访问最小元素的场景比如实现优先队列也就是今天的力扣347题

大顶堆(Max Heap)
在大顶堆中,每个非叶子节点的值都必须小于或等于其子节点的值。因此,堆的根节点包含了所有节点中的最大值。大顶堆通常用于需要快速访问最大元素的场景

堆的操作
堆提供了几种基本操作:

  • insert(或add):向堆中添加一个新元素。
  • remove:移除堆中的最大元素(在大顶堆中)或最小元素(在小顶堆中)。
  • heapify:将一个数组转换成堆结构。
  • extractMax / extractMin:从堆中提取并移除最大元素(在大顶堆中)或最小元素(在小顶堆中)。

在Java中实现堆,Java标准库中的PriorityQueue就是基于堆实现的,默认情况下它使用小顶堆。可以指定一个Comparator来改变优先级队列的比较规则,从而可以实现大顶堆。

算法题

Leetcode  239. 滑动窗口最大值

题目链接:239. 滑动窗口最大值

大佬视频讲解:滑动窗口最大值视频讲解

个人思路

思路打结,不知道怎么实现

解法
单调队列

使用单调递减队列,将放进去窗口里的元素随着窗口的移动,队列也一进一出,每次移动之后,队列直接知道最大值是什么。

还有注意,队列没有必要维护窗口里的所有元素只需要维护有可能成为窗口里最大值的元素,同时保证队列里的元素数值是由大到小的。

设计单调队列的时候,pop,和push操作要保持如下规则:

  1. poll(val):如果窗口移除的元素value等于单调队列的出口元素,那么队列弹出元素,否则不用任何操作
  2. add(val):如果add的元素value大于入口元素的数值,那么就将队列入口的元素弹出,直到add元素的数值小于等于队列入口元素的数值为止

保持如上规则,每次窗口移动的时候,只要deque.peek()就可以返回当前窗口的最大值。

class MyQueue {Deque<Integer> deque = new LinkedList<>();//弹出元素时,比较当前要弹出的数值是否等于队列出口的数值,如果相等则弹出;void poll(int val) {if (!deque.isEmpty() && val == deque.peek()) { //也要判断队列当前是否为空deque.poll();}}//添加元素时,如果要添加的元素大于入口处的元素,就将入口元素弹出,这样保证队列元素单调递减//比如此时队列元素4,3,1 ;5将要入队,比4,3,1都大,所以都弹出,此时队列:5void add(int val) {while (!deque.isEmpty() && val > deque.getLast()) {//push元素的数值小于等于队列入口元素的数值为止deque.removeLast();}deque.add(val);}//队列队顶元素始终为最大值int peek() {return deque.peek();}
}class Solution {public int[] maxSlidingWindow(int[] nums, int k) {if (nums.length == 1) {return nums;}int len = nums.length - k + 1;int[] res = new int[len];//存放结果元素的数组int num = 0;MyQueue myQueue = new MyQueue();//自定义队列//先将前k的元素放入队列for (int i = 0; i < k; i++) {myQueue.add(nums[i]);}res[num++] = myQueue.peek();for (int i = k; i < nums.length; i++) {myQueue.poll(nums[i - k]); //滑动窗口移除最前面的元素,移除是判断该元素是否放入队列myQueue.add(nums[i]);//滑动窗口加入最后面的元素res[num++] = myQueue.peek();//记录对应的最大值}return res;}
}

时间复杂度:O(n);(遍历数组)

空间复杂度:O(n);(辅助数组和队列)

Leetcode 347.前 K 个高频元素

题目链接:347.前 K 个高频元素

大佬视频讲解:前 K 个高频元素 视频讲解

个人思路

根据题意解答分为三步走,第一步要统计元素出现频率,第二步对频率排序,第三步找出前K个高频元素

解法
小顶堆

第一步统计元素出现的频率,这一类的问题可以使用map来进行统计。

第二步对频率进行排序,可以使用一种 容器适配器就是优先级队列,就是一个披着队列外衣的堆,因为优先级队列对外接口只是从队头取元素,从队尾添加元素,再无其他取元素的方式,看起来就是一个队列。

第三步找出前k个高频元素因为要统计最大前k个元素,只有小顶堆每次将最小的元素弹出,最后小顶堆里积累的才是前k个最大元素。

如下图所示

class Solution {public int[] topKFrequent(int[] nums, int k) {Map<Integer,Integer> map = new HashMap<>();//key为数组元素值,val为对应出现次数for(int num:nums){map.put(num,map.getOrDefault(num,0)+1);}//在优先队列中存储二元组(num,cnt),cnt表示元素值num在数组中的出现次数//出现次数按从队头到队尾的顺序是从小到大排,出现次数最低的在队头(小顶堆)PriorityQueue<int[]> pq = new PriorityQueue<>((pair1,pair2)->pair1[1]-pair2[1]);for(Map.Entry<Integer,Integer> entry:map.entrySet()){//小顶堆只需要维持k个元素有序if(pq.size()<k){//小顶堆元素个数小于k个时直接加pq.add(new int[]{entry.getKey(),entry.getValue()});}else{if(entry.getValue()>pq.peek()[1]){//当前元素出现次数大于小顶堆的根结点//弹出队头(小顶堆的根结点),即把堆里出现次数最少的那个删除,留下的就是出现次数多的了pq.poll();pq.add(new int[]{entry.getKey(),entry.getValue()});}}}int[] ans = new int[k];//结果数组for(int i=k-1;i>=0;i--){//依次弹出小顶堆;先弹出的是堆的根,出现次数少,后面弹出的出现次数多ans[i] = pq.poll()[0];}return ans;}
}

时间复杂度:O(nlogk);(小顶堆构建)

空间复杂度:O(n);(优先队列,结果数组都不超过n)

以上是个人的思考反思与总结,若只想根据系列题刷,参考卡哥的网址代码随想录算法官网代码随想录算法官网代码随想录算法官网

这篇关于算法打卡day11|栈与队列篇03|Leetcode 239. 滑动窗口最大值、347.前 K 个高频元素的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/786679

相关文章

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Redis消息队列实现异步秒杀功能

《Redis消息队列实现异步秒杀功能》在高并发场景下,为了提高秒杀业务的性能,可将部分工作交给Redis处理,并通过异步方式执行,Redis提供了多种数据结构来实现消息队列,总结三种,本文详细介绍Re... 目录1 Redis消息队列1.1 List 结构1.2 Pub/Sub 模式1.3 Stream 结

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

MySQL高级查询之JOIN、子查询、窗口函数实际案例

《MySQL高级查询之JOIN、子查询、窗口函数实际案例》:本文主要介绍MySQL高级查询之JOIN、子查询、窗口函数实际案例的相关资料,JOIN用于多表关联查询,子查询用于数据筛选和过滤,窗口函... 目录前言1. JOIN(连接查询)1.1 内连接(INNER JOIN)1.2 左连接(LEFT JOI

SpringKafka错误处理(重试机制与死信队列)

《SpringKafka错误处理(重试机制与死信队列)》SpringKafka提供了全面的错误处理机制,通过灵活的重试策略和死信队列处理,下面就来介绍一下,具有一定的参考价值,感兴趣的可以了解一下... 目录引言一、Spring Kafka错误处理基础二、配置重试机制三、死信队列实现四、特定异常的处理策略五

如何高效移除C++关联容器中的元素

《如何高效移除C++关联容器中的元素》关联容器和顺序容器有着很大不同,关联容器中的元素是按照关键字来保存和访问的,而顺序容器中的元素是按它们在容器中的位置来顺序保存和访问的,本文介绍了如何高效移除C+... 目录一、简介二、移除给定位置的元素三、移除与特定键值等价的元素四、移除满足特android定条件的元

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

SpringBoot启动报错的11个高频问题排查与解决终极指南

《SpringBoot启动报错的11个高频问题排查与解决终极指南》这篇文章主要为大家详细介绍了SpringBoot启动报错的11个高频问题的排查与解决,文中的示例代码讲解详细,感兴趣的小伙伴可以了解一... 目录1. 依赖冲突:NoSuchMethodError 的终极解法2. Bean注入失败:No qu