Sparse R-CNN: End-to-End Object Detection with Learnable Proposals - 稀疏-RCNN:具有可学习提议的端到端对象检测--阅读笔记

本文主要是介绍Sparse R-CNN: End-to-End Object Detection with Learnable Proposals - 稀疏-RCNN:具有可学习提议的端到端对象检测--阅读笔记,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

在这里插入图片描述
题目:Sparse R-CNN: End-to-End Object Detection with Learnable Proposals
作者:Peize Sun1∗, Rufeng Zhang2∗, Yi Jiang3∗, Tao Kong3, Chenfeng Xu
发表单位:港大,同济,字节跳动AI lab
关键词:端到端物体检测,proposal boxes , proposal features , Sparse
论文:Sparse R-CNN: End-to-End Object Detection with Learnable Proposals
代码:https://github.com/PeizeSun/SparseR-CNN

1 Motivation

  • 下表格是目标检测领域主流的两大类方法与本文方法的比较
在这里插入图片描述第一类就是使用大量的目标候选框,如DPM、YOLO、RetinaNet、FOCS:滑动窗口、基于锚框、基于参考点;这些东西被提前预设在图像网格或者特征图网格上,然后直接预测这些候选框到GT的尺度、位置偏移及物体类别
在这里插入图片描述第二大类就是dense-to-sparse的,如R-CNN家族:只对一组sparse稀疏的候选进行预测和分类,但本质上这组sparse的候选还是来自于dense的检测
在这里插入图片描述本文提出一种纯sparse的检测方案,用于解决以上两类基于dense的固有属性带来的固有局限,比如NMS后处理、many-to-one的正负样本分配、以及先验候选框的手工设计问题:直接从一组稀疏的可学习的提议出发,抛弃anchor-boxes、reference point等dense的概念,且与DETR一样,不需要NMS后处理,实现整个网络的干净整洁,是一个全新的检测范式。与DETR的不同在于,DETR中每个object query都和全局的特征图做attention交互,这本质上也是dense,本文提出稀疏交互。
  • 下图是RetinaNet、Fast-RCNN、DETR、Sparse-RCNN在COCO val 2017上的收敛曲线,可以看出,稀疏RCNN在训练的效率和检测精度上都取得了具有竞争力的性能。(其实deformable-DETR效果会比DETR好一些,这两者还未见比较。)这里是引用

2 思想及主要组成部分

稀疏R-CNN的关键思想是用一小组可学习的建议框/特征(一般是100~300个)来代替RPN(区域建议网络)的数十万个候选。

下面看一下它的主要组成

backbone基于ResNet架构的FPN(与Fast-RCNN对齐,实际上有可能从更复杂的设计中提升性能,就像Deformable DETR一样,使用SAE堆叠自编码器层和可变形卷积网络)
三个输入image、proposal boxes、proposal features
一个动态实例交互头让proposal box经过RoIAlign操作提取特征与proposal feature融合,使用融合特征进行预测
预测层用于两个特定任务的预测

3 Sparse R-CNN

下面主要讲一下Sparse-Rcnn的框架流程,本节将详细描述每个组件:
在这里插入图片描述

Proposal Boxes(可学习的提议框)

这些学习到的提议框我们可以理解为是训练集中潜在目标位置的统计数据,也就是可以看做图像中最可能包含目标的区域的初始猜测,因为我们认为RPN的提议虽然与当前图像有很强的相关性,但是代价较大,而合理的统计数字已经是合格的候选了,也就是说,我们不管输入是什么!如下图所示,白色的框就是N=100个提议框,是固定的:
在这里插入图片描述

Proposal boxes维度是N*4的具体细节:对图像归一化的中心坐标、高度、宽度;这些参数会在训练期间利用反向传播算法更新,因此是可学习的。

Proposal Features(可学习的提议特征)

可学习的提议特征的提出是因为虽然proposal boxes这个四维建议框是描述物体的一种简短明确的方式,但它只提供了物体的粗略定位,大量信息细节丢失,如物体的姿态、形状,因此引入提议特征proposal features这个概念,是高维的潜在向量,可以编码丰富的实例特征

proposal features 是N*d的细节:N与proposal boxes的个相同,为N,以便one-to-one的交互;d是特征维度(e.g.256)。

  • one-to-one的意思:proposal boxes 经过RoIAlign操作得到特征f_i (S*S,C),与proposal features P_i (C),这两个特征在动态交互头这里是一一对应的,就比如下图这个意思,其实就是跟proposal boxes一样的位置去训练得到的,这构成了交互头的两个输入:
    在这里插入图片描述
    !](https://img-blog.csdnimg.cn/97a265bc2d58443f9c40f3f82b1a5797.jpeg)

动态实例交互的头

Dynamin Head 这里在图中可以看出是 Dynamic Head k,说明是第k个动态头,接受的输入是第k个提议框的RoI特征和第k个提议特征,这也是与其余检测方法的不同之处,即:第k个提议特征为对应的第k个RoI特征提供一组动态参数;而其余检测方法则是使用一组固定检测头参数。

原文:每个RoI特征被输入到自己的专属头中进行目标定位和分类,其中每个头以特定的提议特征为条件。

在下面这张图中看这句话比较清晰一些,提议特征被用做卷积的权重,在下面这张图中,就是Params。
且Head的数量跟proposal boxes的数量相同,即head/learnable proposal box/learnable proposal feature是一一对应的。
这里引用一篇博文段(具体哪篇记不清了)描述的更全面,不过我还不太了解transform结构和注意力机制,先放在这里:‘对感兴趣区域的特征进行卷积处理,得到最终的特征。这样,那些包含大部分前景信息的边界框对最终的目标位置和分类产生影响。同时,自注意力模块被嵌入到动态头部,用于推理物体之间的关系,并通过这种卷积来影响预测。’
在这里插入图片描述

  • 下面描述了动态实例交互的伪代码,这里对两个特征之间是如何交互的,写的比文字清楚一些:

在这里插入图片描述
这里很新颖的一点就是支持并行操作来提高效率。最终的回归预测由一个3层的感知机计算,而分类预测由一个线性投影层计算。

预测损失

这里我比较感兴趣点在于它思路其实跟DETR差不多,采用集合预测的思路,于是sparse-rcnn在固定大小的分类和框的坐标预测集合上应用集合预测损失,基于集合的预测损失在预测和真值对象之间产生一个最优的二分匹配。

  • 匹配成本定义如下:
    在这里插入图片描述
    但其实本文在拥挤场景下还是会出现一对多的情况,即假阳性。这个解决方案在cvpr2022里面有一篇,可以实现拥挤场景下的假阳性消除问题,提高性能。

这篇关于Sparse R-CNN: End-to-End Object Detection with Learnable Proposals - 稀疏-RCNN:具有可学习提议的端到端对象检测--阅读笔记的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/785740

相关文章

Python打印对象所有属性和值的方法小结

《Python打印对象所有属性和值的方法小结》在Python开发过程中,调试代码时经常需要查看对象的当前状态,也就是对象的所有属性和对应的值,然而,Python并没有像PHP的print_r那样直接提... 目录python中打印对象所有属性和值的方法实现步骤1. 使用vars()和pprint()2. 使

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

MySQL JSON 查询中的对象与数组技巧及查询示例

《MySQLJSON查询中的对象与数组技巧及查询示例》MySQL中JSON对象和JSON数组查询的详细介绍及带有WHERE条件的查询示例,本文给大家介绍的非常详细,mysqljson查询示例相关知... 目录jsON 对象查询1. JSON_CONTAINS2. JSON_EXTRACT3. JSON_TA

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

C#之List集合去重复对象的实现方法

《C#之List集合去重复对象的实现方法》:本文主要介绍C#之List集合去重复对象的实现方法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录C# List集合去重复对象方法1、测试数据2、测试数据3、知识点补充总结C# List集合去重复对象方法1、测试数据

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Spring中管理bean对象的方式(专业级说明)

《Spring中管理bean对象的方式(专业级说明)》在Spring框架中,Bean的管理是核心功能,主要通过IoC(控制反转)容器实现,下面给大家介绍Spring中管理bean对象的方式,感兴趣的朋... 目录1.Bean的声明与注册1.1 基于XML配置1.2 基于注解(主流方式)1.3 基于Java

C++/类与对象/默认成员函数@构造函数的用法

《C++/类与对象/默认成员函数@构造函数的用法》:本文主要介绍C++/类与对象/默认成员函数@构造函数的用法,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录名词概念默认成员函数构造函数概念函数特征显示构造函数隐式构造函数总结名词概念默认构造函数:不用传参就可以

C++类和对象之默认成员函数的使用解读

《C++类和对象之默认成员函数的使用解读》:本文主要介绍C++类和对象之默认成员函数的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、默认成员函数有哪些二、各默认成员函数详解默认构造函数析构函数拷贝构造函数拷贝赋值运算符三、默认成员函数的注意事项总结一

golang 对象池sync.Pool的实现

《golang对象池sync.Pool的实现》:本文主要介绍golang对象池sync.Pool的实现,用于缓存和复用临时对象,以减少内存分配和垃圾回收的压力,下面就来介绍一下,感兴趣的可以了解... 目录sync.Pool的用法原理sync.Pool 的使用示例sync.Pool 的使用场景注意sync.