numba,让python速度提升百倍!

2024-03-08 00:30

本文主要是介绍numba,让python速度提升百倍!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

python由于它动态解释性语言的特性,跑起代码来相比java、c++要慢很多,尤其在做科学计算的时候,十亿百亿级别的运算,让python的这种劣势更加凸显。

办法永远比困难多,numba就是解决python慢的一大利器,可以让python的运行速度提升上百倍!


什么是numba?

numba是一款可以将python函数编译为机器代码的JIT编译器,经过numba编译的python代码(仅限数组运算),其运行速度可以接近C或FORTRAN语言。

numba工作流程

python之所以慢,是因为它是靠CPython编译的,numba的作用是给python换一种编译器。

python、c、numba三种编译器速度对比

使用numba非常简单,只需要将numba装饰器应用到python函数中,无需改动原本的python代码,numba会自动完成剩余的工作。

import numba
from numba import jit@jit(nopython=True) # jit,numba装饰器中的一种
def go_fast(a): # 首次调用时,函数被编译为机器代码trace = 0# 假设输入变量是numpy数组for i in range(a.shape[0]):   # Numba 擅长处理循环trace += np.tanh(a[i, i]) return a + trace

以上代码是一个python函数,用以计算numpy数组各个数值的双曲正切值,我们使用了numba装饰器,它将这个python函数编译为等效的机器代码,可以大大减少运行时间。

numba适合科学计算

numpy是为面向numpy数组的计算任务而设计的。

在面向数组的计算任务中,数据并行性对于像GPU这样的加速器是很自然的。Numba了解NumPy数组类型,并使用它们生成高效的编译代码,用于在GPU或多核CPU上执行。特殊装饰器还可以创建函数,像numpy函数那样在numpy数组上广播。

什么情况下使用numba呢?

使用numpy数组做大量科学计算时
使用for循环时

学习使用numba

**第一步:**导入numpy、numba及其编译器

import numpy as np
import numba 
from numba import jit

**第二步:**传入numba装饰器jit,编写函数

# 传入jit,numba装饰器中的一种
@jit(nopython=True) 
def go_fast(a): # 首次调用时,函数被编译为机器代码trace = 0# 假设输入变量是numpy数组for i in range(a.shape[0]):   # Numba 擅长处理循环trace += np.tanh(a[i, i])  # numba喜欢numpy函数return a + trace # numba喜欢numpy广播

nopython = True选项要求完全编译该函数(以便完全删除Python解释器调用),否则会引发异常。这些异常通常表示函数中需要修改的位置,以实现优于Python的性能。强烈建议您始终使用nopython = True。

**第三步:**给函数传递实参

# 因为函数要求传入的参数是nunpy数组
x = np.arange(100).reshape(10, 10) 
# 执行函数
go_fast(x)

**第四步:**经numba加速的函数执行时间

% timeit go_fast(x)

输出:
3.63 µs ± 156 ns per loop (mean ± std. dev. of 7 runs, 100000 loops each)

**第五步:**不经numba加速的函数执行时间

def go_fast(a): # 首次调用时,函数被编译为机器代码trace = 0# 假设输入变量是numpy数组for i in range(a.shape[0]):   # Numba 擅长处理循环trace += np.tanh(a[i, i])  # numba喜欢numpy函数return a + trace # numba喜欢numpy广播x = np.arange(100).reshape(10, 10) 
%timeit go_fast(x)

输出:
136 µs ± 1.09 µs per loop (mean ± std. dev. of 7 runs, 10000 loops each)

结论:
在numba加速下,代码执行时间为3.63微秒/循环。不经过numba加速,代码执行时间为136微秒/循环,两者相比,前者快了40倍。

numba让python飞起来

前面已经对比了numba使用前后,python代码速度提升了40倍,但这还不是最快的。
这次,我们不使用numpy数组,仅用for循环,看看nunba对for循环到底有多钟爱!

# 不使用numba的情况
def t():x = 0for i in np.arange(5000):x += ireturn x
%timeit(t())

输出:
408 µs ± 9.73 µs per loop (mean ± std. dev. of 7 runs, 1000 loops each)

# 使用numba的情况
@jit(nopython=True) 
def t():x = 0for i in np.arange(5000):x += ireturn x
%timeit(t()) 

输出:
1.57 µs ± 53.8 ns per loop (mean ± std. dev. of 7 runs, 1000000 loops each)

结论:使用numba前后分别是408微秒/循环、1.57微秒/循环,速度整整提升了200多倍!

结语

numba对python代码运行速度有巨大的提升,这极大的促进了大数据时代的python数据分析能力,对数据科学工作者来说,这真是一个lucky tool !

当然numba不会对numpy和for循环以外的python代码有很大帮助,你不要指望numba可以帮你加快从数据库取数,这点它真的做不到哈。

这篇关于numba,让python速度提升百倍!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/785349

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数