【广度优先搜索】【堆】【C++算法】407. 接雨水 II

2024-03-06 22:52

本文主要是介绍【广度优先搜索】【堆】【C++算法】407. 接雨水 II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

【二分查找】【C++算法】378. 有序矩阵中第 K 小的元素

本文涉及知识点

广度优先搜索 堆

LeetCoce407. 接雨水 II

给你一个 m x n 的矩阵,其中的值均为非负整数,代表二维高度图每个单元的高度,请计算图中形状最多能接多少体积的雨水。
示例 1:
在这里插入图片描述

输入: heightMap = [[1,4,3,1,3,2],[3,2,1,3,2,4],[2,3,3,2,3,1]]
输出: 4
解释: 下雨后,雨水将会被上图蓝色的方块中。总的接雨水量为1+2+1=4。
示例 2:
在这里插入图片描述

输入: heightMap = [[3,3,3,3,3],[3,2,2,2,3],[3,2,1,2,3],[3,2,2,2,3],[3,3,3,3,3]]
输出: 10
提示:
m == heightMap.length
n == heightMap[i].length
1 <= m, n <= 200
0 <= heightMap[i][j] <= 2 * 104

广度优先搜索

vHeight记录各单格包括水的高度,初始为-1,表示未处理。四周边界显然无法留住水,所以四周边界的vHeight等于heightMap。
不断处理vHeight最小单格(r,c)的邻接单格(nr,nc) vHeight[nr][nc] = max(vHeight[r][c],heightMap[nr][nc]。
边界全部在已处理格子中。
{ 不会做什么 已处理格子的邻居都已经处理 不是边界 处理邻居 已处理格子有邻居未处理 边界 \begin{cases} 不会做什么 & 已处理格子的邻居都已经处理 & 不是边界 \\ 处理邻居 & 已处理格子有邻居未处理 & 边界\\ \end{cases} {不会做什么处理邻居已处理格子的邻居都已经处理已处理格子有邻居未处理不是边界边界
假定h1是边界最低vHeight,则任意未处理单格的水达到h1时,都不会流出。
h1所在单格的邻居水不会超过h1,否则会流到h1所在单格。

代码

核心代码

class CEnumGridEdge
{
public:void Init(){for (int r = 0; r < m_r; r++){for (int c = 0; c < m_c; c++){Move(r, c, r + 1, c);Move(r, c, r - 1, c);Move(r, c, r, c + 1);Move(r, c, r, c - 1);}}}const int m_r, m_c;
protected:CEnumGridEdge(int r, int c) :m_r(r), m_c(c){}void Move(int preR, int preC, int r, int c){if ((r < 0) || (r >= m_r)){return;}if ((c < 0) || (c >= m_c)){return;}OnEnumEdge(preR, preC, r, c);};virtual void OnEnumEdge(int preR, int preC, int r, int c) = 0;
};class TNeiBoForGrid : public CEnumGridEdge
{
public:TNeiBoForGrid(const vector<vector<int>>& grid) :m_grid(grid),CEnumGridEdge(grid.size(), grid.front().size()){m_vNext.assign(m_r, vector < vector<pair<int, int>>>(m_c));Init();}virtual void OnEnumEdge(int preR, int preC, int r, int c){	m_vNext[preR][preC].emplace_back(r, c);}const vector<vector<int>>& m_grid;vector < vector < vector<pair<int, int>>>> m_vNext;
};
class Solution {
public:int trapRainWater(vector<vector<int>>& heightMap) {TNeiBoForGrid neiBo(heightMap);vector<vector<int>> vHeight(neiBo.m_r, vector<int>(neiBo.m_c, -1));priority_queue<tuple<int, int, int>, vector<tuple<int, int, int>>, greater<>> minHeap;auto Add = [&](int r, int c, int iHeight){if (vHeight[r][c] >= 0){return;}vHeight[r][c] = iHeight;minHeap.emplace(iHeight, r, c);};for (int r = 0; r < neiBo.m_r; r++){for (int c = 0; c < neiBo.m_c; c++){if ((0 == r) || (neiBo.m_r == r + 1) || (0 == c) || (neiBo.m_c == c + 1)){Add(r, c, heightMap[r][c]);}}}while (minHeap.size()){auto [height, r, c] = minHeap.top();minHeap.pop();for (const auto& [nr, nc] : neiBo.m_vNext[r][c]){Add(nr, nc, max(height, heightMap[nr][nc]));}}int iRet = 0;for (int r = 0; r < neiBo.m_r; r++){iRet += std::accumulate(vHeight[r].begin(), vHeight[r].end(), 0) - std::accumulate(heightMap[r].begin(), heightMap[r].end(), 0);}return iRet;}};

测试用例

template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{vector<vector<int>> heightMap;{Solution sln;heightMap = { {1,4,3,1,3,2},{3,2,1,3,2,4},{2,3,3,2,3,1} };auto res = sln.trapRainWater(heightMap);Assert(4, res);}{Solution sln;heightMap = { {3,3,3,3,3},{3,2,2,2,3},{3,2,1,2,3},{3,2,2,2,3},{3,3,3,3,3} };auto res = sln.trapRainWater(heightMap);Assert(10, res);}}

2023年3月

class Solution {
public:
int trapRainWater(vector<vector>& heightMap) {
m_r = heightMap.size();
m_c = heightMap[0].size();
//memset(m_arrNeiNum, 4, sizeof(m_arrNeiNum));
for (int c = 0; c < m_c; c++)
{
//m_arrNeiNum[0][c] = 1;
//m_arrNeiNum[m_r - 1][c] = 1;
AddRowColToRange(0, c, heightMap);
AddRowColToRange(m_r-1, c, heightMap);
}
for (int r = 1; r + 1 < m_r; r++)
{
AddRowColToRange(r,0, heightMap);
AddRowColToRange(r,m_c-1, heightMap);
//m_arrNeiNum[r][0] = 1;
//m_arrNeiNum[r][m_c - 1] = 1;
}
while (m_mHeightRowCol.size())
{
const int iHeight = m_mHeightRowCol.begin()->first;
const int r = m_mHeightRowCol.begin()->second / 1000;
const int c = m_mHeightRowCol.begin()->second % 1000;
Add(r + 1, c, iHeight,heightMap);
Add(r - 1, c, iHeight, heightMap);
Add(r, c + 1, iHeight, heightMap);
Add(r, c - 1, iHeight, heightMap);
m_mHeightRowCol.erase(m_mHeightRowCol.begin());
}
return m_iRet;
}
void Add(int r, int c, int iPreHeight, const vector<vector>& heightMap)
{
if ((r < 0) || (r >= m_r))
{
return;
}
if ((c < 0) || (c >= m_c))
{
return;
}
if (m_setHasDo.count(RowColMask(r,c)))
{
return;
}
const int iCurHeight = heightMap[r][c];
const int iWaterHeight = max(iCurHeight, iPreHeight);
if (iWaterHeight > iCurHeight)
{
m_iRet += iWaterHeight - iCurHeight;
}
AddRowColToRange(r, c, iWaterHeight);
}
void AddRowColToRange(int r, int c, const int iWaterHeight)
{
const int iRowCol = RowColMask(r, c);
m_mHeightRowCol.emplace(iWaterHeight, iRowCol);
m_setHasDo.insert(iRowCol);
}
void AddRowColToRange(int r, int c,const vector<vector>& heightMap)
{
AddRowColToRange(r, c, heightMap[r][c]);
}
inline int RowColMask(int r, int c)
{
return 1000 * r + c;
}
int m_r;
int m_c;
std::multimap<int, int> m_mHeightRowCol;//记录当前边界
std::unordered_set m_setHasDo;//记录已经处理的格子
std::unordered_set m_setNeiHasDo;//记录相邻格子已经处理完毕
//char m_arrNeiNum[200][200];//记录邻居数
int m_iRet = 0;

};

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快

速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关

下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【广度优先搜索】【堆】【C++算法】407. 接雨水 II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/781625

相关文章

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域