大型文件数据读取并持久化到数据库

2024-03-06 19:36

本文主要是介绍大型文件数据读取并持久化到数据库,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

产品经理今天给了一个上亿数据的文本文件给我,让我把导入到mysql数据库。
文本的内容很简单,只有一个字段,但有1亿行。
在这里插入图片描述
我拿到文件后最开始直接用navicat工具直接导入,但发现效率极慢,跑了一分多钟,才导进去10W+数据进去,算下来要跑完至少需要20多个小时,时间不允许。
看来只能自己写代码来提升效率了。
常规的做法肯定是把文件内容按行读取出来,然后每N条拆分一批,再插入到数据库中。但这个文件太大,一次性全部读取到内存中,对机器有点压力。所以只能按批来读取,一边读一边写,已经持久化的数据就及时释放掉,避免一直占用内存。哎!LinkedBlockingQueue 就很适合干这个事。

import cn.hutool.core.collection.CollUtil;
import cn.hutool.core.collection.LineIter;
import cn.hutool.core.io.FileUtil;
import com.yc.kfpt.oversea.dao.entity.SourceCode;
import com.yc.kfpt.oversea.dao.repository.SourceCodeRepository;
import lombok.RequiredArgsConstructor;
import lombok.extern.slf4j.Slf4j;
import org.springframework.scheduling.annotation.Async;
import org.springframework.stereotype.Service;import java.io.BufferedReader;
import java.nio.charset.Charset;
import java.util.ArrayList;
import java.util.List;
import java.util.concurrent.Executor;
import java.util.concurrent.LinkedBlockingQueue;
import java.util.concurrent.TimeUnit;
import java.util.stream.Collectors;/*** @author 敖癸* @formatter:on* @since 2024/3/6*/
@Slf4j
@Service
@RequiredArgsConstructor
public class ImportDataService {private final SourceCodeRepository sourceCodeRepository;private final Executor asyncExecutor;@Asyncpublic void importData() {LinkedBlockingQueue<String> codeQueue = new LinkedBlockingQueue<>(500000);// 监听器线程queueListener(codeQueue).start();readFile("D:\\91-240305-j000.txt", codeQueue);}/*** 创建队列监听器** @param codeQueue* @return java.lang.Thread* @author 敖癸* @since 2024/3/6 - 16:41*/private Thread queueListener(LinkedBlockingQueue<String> codeQueue) {return new Thread(() -> {long index = 0;List<String> codes = new ArrayList<>();while (true) {try {String code = codeQueue.poll(5, TimeUnit.SECONDS);// 如果超过5秒从队列中还没获取到数据,就认为已经没有数据了if (code == null) {if (CollUtil.isNotEmpty(codes)) {log.info("入库处理: {}", index);List<SourceCode> entities = convertToEntity(codes);asyncExecutor.execute(() -> sourceCodeRepository.saveBatch("GENERAL", entities));codes.clear();}break;}index++;codes.add(code);// 5000一个批次if (codes.size() == 5000) {log.info("入库处理: {}", index);List<SourceCode> entities = convertToEntity(codes);// 持久化操作扔到线程池中异步去执行,可以多开点线程数量。asyncExecutor.execute(() -> sourceCodeRepository.saveBatch("GENERAL", entities));codes.clear();}} catch (InterruptedException e) {throw new RuntimeException(e);}}});}/*** 文件读取** @param codeQueue* @author 敖癸* @since 2024/3/6 - 16:41*/private static void readFile(String filePath, LinkedBlockingQueue<String> codeQueue) {BufferedReader reader = FileUtil.getReader(filePath, Charset.defaultCharset());int readCount = 0;  // 读取行数计数try (LineIter lineIter = new LineIter(reader)) {while (lineIter.hasNext()) {readCount++;// 如果codeQueue中的元素个数已达上限,这里会阻塞codeQueue.put(lineIter.next());if (readCount % 50000 == 0) {log.info("已读取{}行", readCount);}}} catch (Exception e) {log.error("文件读取异常", e);}log.info("读取完成,供{}行", readCount);}/*** 将行数据转换成数据库对象** @param codes* @return java.util.List<com.yc.kfpt.oversea.dao.entity.SourceCode>* @author 敖癸* @since 2024/3/6 - 16:43*/private static List<SourceCode> convertToEntity(List<String> codes) {return codes.stream().map(SourceCode::new).collect(Collectors.toList());}
}

实测,1亿数据量,大概花了20分钟导入完成。
这里需要注意的知识点:
LinkedBlockingQueue 的 put 方法,如果队列已满,会阻塞等待,直到队列中腾出空位。
LinkedBlockingQueue 的 poll 方法,可以设置超时时间,在等待超时后如果在队列中还是没有拿到数据,就返回null。
注意 take, add, offer, remove,poll,put的使用区别
注意 take, add, offer, remove,poll,put的使用区别

关于 LinkedBlockingQueue 的详解,可以参考一下这位博主的文章
深入理解Java系列 | LinkedBlockingQueue用法详解

这篇关于大型文件数据读取并持久化到数据库的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/781094

相关文章

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring Boot读取配置文件的五种方式小结

《SpringBoot读取配置文件的五种方式小结》SpringBoot提供了灵活多样的方式来读取配置文件,这篇文章为大家介绍了5种常见的读取方式,文中的示例代码简洁易懂,大家可以根据自己的需要进... 目录1. 配置文件位置与加载顺序2. 读取配置文件的方式汇总方式一:使用 @Value 注解读取配置方式二

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr

基于Python实现读取嵌套压缩包下文件的方法

《基于Python实现读取嵌套压缩包下文件的方法》工作中遇到的问题,需要用Python实现嵌套压缩包下文件读取,本文给大家介绍了详细的解决方法,并有相关的代码示例供大家参考,需要的朋友可以参考下... 目录思路完整代码代码优化思路打开外层zip压缩包并遍历文件:使用with zipfile.ZipFil