100%开源大模型OLMo:代码/权重/数据集/训练全过程公开,重定义AI共享

本文主要是介绍100%开源大模型OLMo:代码/权重/数据集/训练全过程公开,重定义AI共享,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

前言

近日,艾伦人工智能研究所联合多个顶尖学术机构发布了史上首个100%开源的大模型“OLMo”,这一举措被认为是AI开源社区的一大里程碑。OLMo不仅公开了模型权重,还包括了完整的训练代码、数据集和训练过程,为后续的开源工作设立了新的标准。这一开源模型的推出,无疑将极大促进自然语言处理(NLP)技术的发展和研究。

  • Huggingface模型下载:https://huggingface.co/allenai/OLMo-7B

  • AI快站模型免费加速下载:https://aifasthub.com/models/allenai

OLMo模型的创新之处

OLMo模型基于decoder-only的Transformer架构,采用了PaLM和Llama使用的SwiGLU激活函数,引入了旋转位置嵌入技术(RoPE),并改进了基于字节对编码(BPE)的分词器,以减少模型输出中的个人可识别信息。此外,该模型还采用了不使用偏置项的策略,以增强模型的稳定性。

开源内容的全面性

OLMo的开源内容包括了模型的所有相关资料:

  • 模型权重和训练代码:提供了四个不同架构、优化器和训练硬件体系下的7B大小的模型,以及一个1B大小的模型。

  • 预训练语料库:包含高达3T token的开源语料库,及其生成代码。

  • 评估工具套件:包括每个模型训练过程中每1000步中包含的超过500个的检查点以及评估代码。

性能评估

从评估结果来看,OLMo-7B模型在多个核心任务上的准确率呈现上升趋势,显示了良好的性能。尤其是在生成任务或阅读理解任务上,OLMo-7B甚至超过了Llama 2等同类开源模型,尽管在某些热门的问答任务上表现略逊。

在很多生成任务或阅读理解任务(例如truthfulQA)上,OLMo-7B都超过了Llama 2,但在一些热门的问答任务(如MMLU或Big-bench Hard)上表现则要差一些。

下图展示了9个核心任务准确率的变化趋势。

除了OBQA外,随着OLMo-7B接受更多数据的训练,几乎所有任务的准确率都呈现上升趋势。

与此同时,OLMo 1B与其同类模型的核心评估结果表明,OLMo与它们处于同一水平。

开源带来的影响

OLMo的全面开源,不仅为AI研究提供了宝贵的资源,还有助于降低研究和开发的门槛,推动AI技术的创新和发展。通过这种开放的模式,研究人员可以更深入地探索AI模型的内部运作机制,共同推动语言模型科学的进步。

结论

OLMo的发布,标志着AI开源模型进入了一个新的时代。随着越来越多的研究机构和企业加入到开源的行列,我们有理由相信,未来的AI技术将更加开放、透明和创新。

模型下载

Huggingface模型下载

https://huggingface.co/allenai/OLMo-7B

AI快站模型免费加速下载

https://aifasthub.com/models/allenai

这篇关于100%开源大模型OLMo:代码/权重/数据集/训练全过程公开,重定义AI共享的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/778826

相关文章

使用Redis快速实现共享Session登录的详细步骤

《使用Redis快速实现共享Session登录的详细步骤》在Web开发中,Session通常用于存储用户的会话信息,允许用户在多个页面之间保持登录状态,Redis是一个开源的高性能键值数据库,广泛用于... 目录前言实现原理:步骤:使用Redis实现共享Session登录1. 引入Redis依赖2. 配置R

Django中的函数视图和类视图以及路由的定义方式

《Django中的函数视图和类视图以及路由的定义方式》Django视图分函数视图和类视图,前者用函数处理请求,后者继承View类定义方法,路由使用path()、re_path()或url(),通过in... 目录函数视图类视图路由总路由函数视图的路由类视图定义路由总结Django允许接收的请求方法http

使用Python开发一个Ditto剪贴板数据导出工具

《使用Python开发一个Ditto剪贴板数据导出工具》在日常工作中,我们经常需要处理大量的剪贴板数据,下面将介绍如何使用Python的wxPython库开发一个图形化工具,实现从Ditto数据库中读... 目录前言运行结果项目需求分析技术选型核心功能实现1. Ditto数据库结构分析2. 数据库自动定位3

python使用Akshare与Streamlit实现股票估值分析教程(图文代码)

《python使用Akshare与Streamlit实现股票估值分析教程(图文代码)》入职测试中的一道题,要求:从Akshare下载某一个股票近十年的财务报表包括,资产负债表,利润表,现金流量表,保存... 目录一、前言二、核心知识点梳理1、Akshare数据获取2、Pandas数据处理3、Matplotl

pandas数据的合并concat()和merge()方式

《pandas数据的合并concat()和merge()方式》Pandas中concat沿轴合并数据框(行或列),merge基于键连接(内/外/左/右),concat用于纵向或横向拼接,merge用于... 目录concat() 轴向连接合并(1) join='outer',axis=0(2)join='o

IDEA中配置Tomcat全过程

《IDEA中配置Tomcat全过程》文章介绍了在IDEA中配置Tomcat的六步流程,包括添加服务器、配置部署选项、设置应用服务器及启动,并提及Maven依赖可能因约定大于配置导致问题,需检查依赖版本... 目录第一步第二步第三步第四步第五步第六步总结第一步选择这个方框第二步选择+号,找到Tomca

Django开发时如何避免频繁发送短信验证码(python图文代码)

《Django开发时如何避免频繁发送短信验证码(python图文代码)》Django开发时,为防止频繁发送验证码,后端需用Redis限制请求频率,结合管道技术提升效率,通过生产者消费者模式解耦业务逻辑... 目录避免频繁发送 验证码1. www.chinasem.cn避免频繁发送 验证码逻辑分析2. 避免频繁

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

精选20个好玩又实用的的Python实战项目(有图文代码)

《精选20个好玩又实用的的Python实战项目(有图文代码)》文章介绍了20个实用Python项目,涵盖游戏开发、工具应用、图像处理、机器学习等,使用Tkinter、PIL、OpenCV、Kivy等库... 目录① 猜字游戏② 闹钟③ 骰子模拟器④ 二维码⑤ 语言检测⑥ 加密和解密⑦ URL缩短⑧ 音乐播放

Python使用Tenacity一行代码实现自动重试详解

《Python使用Tenacity一行代码实现自动重试详解》tenacity是一个专为Python设计的通用重试库,它的核心理念就是用简单、清晰的方式,为任何可能失败的操作添加重试能力,下面我们就来看... 目录一切始于一个简单的 API 调用Tenacity 入门:一行代码实现优雅重试精细控制:让重试按我