Spark RDD/Core 编程 API入门系列之map、filter、textFile、cache、对Job输出结果进行升和降序、union、groupByKey、join、reduce、look

本文主要是介绍Spark RDD/Core 编程 API入门系列之map、filter、textFile、cache、对Job输出结果进行升和降序、union、groupByKey、join、reduce、look,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

1、以本地模式实战map和filter

2、以集群模式实战textFile和cache

3、对Job输出结果进行升和降序

4、union

5、groupByKey

6、join

7、reduce

8、lookup

 

 

1、以本地模式实战map和filter

以local的方式,运行spark-shell。

spark@SparkSingleNode:~$ cd /usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin
spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin$ pwd
/usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin
spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin$ ./spark-shell

 

 从集合中创建RDD,spark中主要提供了两种函数:parallelize和makeRDD,

 

scala> val rdd = sc.parallelize(List(1,2,3,4,5))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[0] at parallelize at <console>:21

scala> val mappedRDD = rdd.map(2*_)
mappedRDD: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[1] at map at <console>:23

scala> mappedRDD.collect

得到

res0: Array[Int] = Array(2, 4, 6, 8, 10)

scala>

 

 

 

scala> val filteredRDD = mappedRDD.filter(_ > 4)
16/09/26 20:32:29 INFO storage.BlockManagerInfo: Removed broadcast_0_piece0 on localhost:40688 in memory (size: 1218.0 B, free: 534.5 MB)
16/09/26 20:32:30 INFO spark.ContextCleaner: Cleaned accumulator 1
filteredRDD: org.apache.spark.rdd.RDD[Int] = MapPartitionsRDD[2] at filter at <console>:25

scala> filteredRDD.collect

 

 

注意,一般,生产环境和正宗的写法是。

scala> val filteredRDDAgain = sc.parallelize(List(1,2,3,4,5)).map(2 * _).filter(_ > 4).collect

 

 

 

 

 

 

2、以集群模式实战textFile和cache

 启动hadoop集群

spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ jps
8457 Jps
spark@SparkSingleNode:/usr/local/hadoop/hadoop-2.6.0$ sbin/start-dfs.sh

 

启动spark集群

 

spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6$ sbin/start-all.sh

 

 spark@SparkSingleNode:/usr/local/spark/spark-1.5.2-bin-hadoop2.6/bin$ ./spark-shell --master spark://SparkSingleNode:7077 

 

 

读取该文件

scala> val rdd = sc.textFile("/README.md")

 使用count统计一下该文件的行数

scala> rdd.count

 

took 7.018386 s

res0: Long = 98

花了时间7.018386 s

 

通过观察RDD.scala源代码即可知道cache和persist的区别:

def persist(newLevel: StorageLevel): this.type = {
  if (storageLevel != StorageLevel.NONE && newLevel != storageLevel) {
    throw new UnsupportedOperationException( "Cannot change storage level of an RDD after it was already assigned a level")
  }
  sc.persistRDD(this)
  sc.cleaner.foreach(_.registerRDDForCleanup(this))
  storageLevel = newLevel
  this
}
/** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
def persist(): this.type = persist(StorageLevel.MEMORY_ONLY)

/** Persist this RDD with the default storage level (`MEMORY_ONLY`). */
def cache(): this.type = persist()

可知:
1)RDD的cache()方法其实调用的就是persist方法,缓存策略均为MEMORY_ONLY;
2)可以通过persist方法手工设定StorageLevel来满足工程需要的存储级别;
3)cache或者persist并不是action;
附:cache和persist都可以用unpersist来取消

 

进行缓存

scala> rdd.cache
res1: rdd.type = MapPartitionsRDD[1] at textFile at <console>:21

执行count,使得缓存生效

scala> rdd.count

 

took 2.055063 s
res2: Long = 98

花了时间 2.055063 s

 

再执行,count

took 0.583177 s
res3: Long = 98

花了时间 0.583177 s

 

总结,我们直接基于cache缓存后的数据,计算所消耗时间大大减少。

 

 正在进行中的spark-shell

 

 

 

 接着,对上面的RDD,进行wordcount操作

scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_)
wordcount: org.apache.spark.rdd.RDD[(String, Int)] = ShuffledRDD[4] at reduceByKey at <console>:23

scala> wordcount.collect

 

 通过saveAsTextFile把数据保存起来

 

res4: Array[(String, Int)] = Array((package,1), (this,1), (Version"](http://spark.apache.org/docs/latest/building-spark.html#specifying-the-hadoop-version),1), (Because,1), (Python,2), (cluster.,1), (its,1), ([run,1), (general,2), (have,1), (pre-built,1), (locally.,1), (locally,2), (changed,1), (sc.parallelize(1,1), (only,1), (several,1), (This,2), (basic,1), (Configuration,1), (learning,,1), (documentation,3), (YARN,,1), (graph,1), (Hive,2), (first,1), (["Specifying,1), ("yarn-client",1), (page](http://spark.apache.org/documentation.html),1), ([params]`.,1), (application,1), ([project,2), (prefer,1), (SparkPi,2), (<http://spark.apache.org/>,1), (engine,1), (version,1), (file,1), (documentation,,1), (MASTER,1), (example,3), (distribution.,1), (are,1), (params,1), (scala>,1), (DataFrames...
scala> wordcount.saveAsTextFile("/result")

只是,仅仅对每行,做了wordcount而已。

 

 

3、对Job输出结果进行升和降序

升序

scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_).map(x => (x._2,x._1)).sortByKey(true).map(x => (x._2,x._1)).saveAsTextFile("/resultAscSorted")

 

同理,去下载,不多赘述。

变了

 

 

scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_).map(x => (x._2,x._1)).sortBy(true).map(x => (x._2,x._1)).saveAsTextFile("/resultAscSorted")
<console>:23: error: type mismatch;
found : Boolean(true)
required: ((Int, String)) => ?
val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_).map(x => (x._2,x._1)).sortBy(true).map(x => (x._2,x._1)).saveAsTextFile("/resultAscSorted")
^

scala>

 

 

 降序

scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).reduceByKey(_+_).map(x => (x._2,x._1)).sortByKey(false).map(x => (x._2,x._1)).saveAsTextFile("/resultDescSorted")

 

下载,同理

 此刻,成功对Job输出结果进行了排序。

 

4、union

union的使用

scala> val rdd1 = sc.parallelize(List(('a',1),('b',1)))
rdd1: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[26] at parallelize at <console>:21

scala> val rdd2 = sc.parallelize(List(('c',1),('d',1)))
rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[27] at parallelize at <console>:21

scala> rdd1 union rdd2
res6: org.apache.spark.rdd.RDD[(Char, Int)] = UnionRDD[28] at union at <console>:26

scala> val result = rdd1 union rdd2
result: org.apache.spark.rdd.RDD[(Char, Int)] = UnionRDD[29] at union at <console>:25

 

 

使用collect操作,查看一下执行结果

scala> result.collect

res7: Array[(Char, Int)] = Array((a,1), (b,1), (c,1), (d,1))

 

5、groupByKey

 

scala> val wordcount = rdd.flatMap(_.split(' ')).map((_,1)).groupByKey
wordcount: org.apache.spark.rdd.RDD[(String, Iterable[Int])] = ShuffledRDD[32] at groupByKey at <console>:23

scala> wordcount.collect

res8: Array[(String, Iterable[Int])] = Array((package,CompactBuffer(1)), (this,CompactBuffer(1)), (Version"](http://spark.apache.org/docs/latest/building-spark.html#specifying-the-hadoop-version),CompactBuffer(1)), (Because,CompactBuffer(1)), (Python,CompactBuffer(1, 1)), (cluster.,CompactBuffer(1)), (its,CompactBuffer(1)), ([run,CompactBuffer(1)), (general,CompactBuffer(1, 1)), (YARN,,CompactBuffer(1)), (have,CompactBuffer(1)), (pre-built,CompactBuffer(1)), (locally.,CompactBuffer(1)), (locally,CompactBuffer(1, 1)), (changed,CompactBuffer(1)), (sc.parallelize(1,CompactBuffer(1)), (only,CompactBuffer(1)), (several,CompactBuffer(1)), (learning,,CompactBuffer(1)), (basic,CompactBuffer(1)), (first,CompactBuffer(1)), (This,CompactBuffer(1, 1)), (documentation,CompactBuffer(1, 1, 1)), (Confi...
scala>

 

6、join

 概念知识,参考

http://www.cnblogs.com/goforward/p/4748128.html  

scala> val rdd1 = sc.parallelize(List(('a',1),('a',2),('b',3),('b',4)))
rdd1: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[33] at parallelize at <console>:21

scala> val rdd2 = sc.parallelize(List(('a',5),('a',6),('b',7),('b',8)))
rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[34] at parallelize at <console>:21

scala> rdd1 join rdd2
res9: org.apache.spark.rdd.RDD[(Char, (Int, Int))] = MapPartitionsRDD[37] at join at <console>:26

scala> val result = rdd1 join rdd2
result: org.apache.spark.rdd.RDD[(Char, (Int, Int))] = MapPartitionsRDD[40] at join at <console>:25

scala> result.collect

 

res10: Array[(Char, (Int, Int))] = Array((b,(3,7)), (b,(3,8)), (b,(4,7)), (b,(4,8)), (a,(1,5)), (a,(1,6)), (a,(2,5)), (a,(2,6)))

scala>

 

可见,join操作,完全是一个笛卡尔积的操作。

 

 

 

7、reduce

reduce本身啊,在RDD操作里,属于一个action类型的操作,会导致job作业的提交和执行。

 

scala> val rdd = sc.parallelize(List(1,2,3,4,5))
rdd: org.apache.spark.rdd.RDD[Int] = ParallelCollectionRDD[41] at parallelize at <console>:21

scala> rdd.reduce(_+_)

res11: Int = 15

 

8、lookup

scala> val rdd2 = sc.parallelize(List(('a',5),('a',6),('b',7),('b',8)))
rdd2: org.apache.spark.rdd.RDD[(Char, Int)] = ParallelCollectionRDD[42] at parallelize at <console>:21

scala> rdd2.lookup('a')    //返回一个seq, (5, 6) 是把a对应的所有元素的value提出来组成一个seq

 

res12: Seq[Int] = WrappedArray(5, 6)

 

这篇关于Spark RDD/Core 编程 API入门系列之map、filter、textFile、cache、对Job输出结果进行升和降序、union、groupByKey、join、reduce、look的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/778694

相关文章

从入门到精通详解Python虚拟环境完全指南

《从入门到精通详解Python虚拟环境完全指南》Python虚拟环境是一个独立的Python运行环境,它允许你为不同的项目创建隔离的Python环境,下面小编就来和大家详细介绍一下吧... 目录什么是python虚拟环境一、使用venv创建和管理虚拟环境1.1 创建虚拟环境1.2 激活虚拟环境1.3 验证虚

从基础到高级详解Python数值格式化输出的完全指南

《从基础到高级详解Python数值格式化输出的完全指南》在数据分析、金融计算和科学报告领域,数值格式化是提升可读性和专业性的关键技术,本文将深入解析Python中数值格式化输出的相关方法,感兴趣的小伙... 目录引言:数值格式化的核心价值一、基础格式化方法1.1 三种核心格式化方式对比1.2 基础格式化示例

SpringBoot集成XXL-JOB实现任务管理全流程

《SpringBoot集成XXL-JOB实现任务管理全流程》XXL-JOB是一款轻量级分布式任务调度平台,功能丰富、界面简洁、易于扩展,本文介绍如何通过SpringBoot项目,使用RestTempl... 目录一、前言二、项目结构简述三、Maven 依赖四、Controller 代码详解五、Service

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

使用Spring Cache本地缓存示例代码

《使用SpringCache本地缓存示例代码》缓存是提高应用程序性能的重要手段,通过将频繁访问的数据存储在内存中,可以减少数据库访问次数,从而加速数据读取,:本文主要介绍使用SpringCac... 目录一、Spring Cache简介核心特点:二、基础配置1. 添加依赖2. 启用缓存3. 缓存配置方案方案

Nginx中配置使用非默认80端口进行服务的完整指南

《Nginx中配置使用非默认80端口进行服务的完整指南》在实际生产环境中,我们经常需要将Nginx配置在其他端口上运行,本文将详细介绍如何在Nginx中配置使用非默认端口进行服务,希望对大家有所帮助... 目录一、为什么需要使用非默认端口二、配置Nginx使用非默认端口的基本方法2.1 修改listen指令

Python异步编程之await与asyncio基本用法详解

《Python异步编程之await与asyncio基本用法详解》在Python中,await和asyncio是异步编程的核心工具,用于高效处理I/O密集型任务(如网络请求、文件读写、数据库操作等),接... 目录一、核心概念二、使用场景三、基本用法1. 定义协程2. 运行协程3. 并发执行多个任务四、关键

解决Nginx启动报错Job for nginx.service failed because the control process exited with error code问题

《解决Nginx启动报错Jobfornginx.servicefailedbecausethecontrolprocessexitedwitherrorcode问题》Nginx启... 目录一、报错如下二、解决原因三、解决方式总结一、报错如下Job for nginx.service failed bec

AOP编程的基本概念与idea编辑器的配合体验过程

《AOP编程的基本概念与idea编辑器的配合体验过程》文章简要介绍了AOP基础概念,包括Before/Around通知、PointCut切入点、Advice通知体、JoinPoint连接点等,说明它们... 目录BeforeAroundAdvise — 通知PointCut — 切入点Acpect — 切面

MySQL按时间维度对亿级数据表进行平滑分表

《MySQL按时间维度对亿级数据表进行平滑分表》本文将以一个真实的4亿数据表分表案例为基础,详细介绍如何在不影响线上业务的情况下,完成按时间维度分表的完整过程,感兴趣的小伙伴可以了解一下... 目录引言一、为什么我们需要分表1.1 单表数据量过大的问题1.2 分表方案选型二、分表前的准备工作2.1 数据评估