分布式ID生成算法|雪花算法 Snowflake | Go实现

2024-03-04 11:52

本文主要是介绍分布式ID生成算法|雪花算法 Snowflake | Go实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

写在前面

在分布式领域中,不可避免的需要生成一个全局唯一ID。而在近几年的发展中有许多分布式ID生成算法,比较经典的就是 Twitter 的雪花算法(Snowflake Algorithm)。当然国内也有美团的基于snowflake改进的Leaf算法。那么今天我们就来介绍一下雪花算法。

雪花算法

算法来源: 世界上没有完全相同的两片雪花 。所以!雪崩的时候,没有任何一片雪花是相同的!

雪花算法的本质是生成一个64位的 long int 类型的id,可以拆分成一下几个部分:

  • 最高位固定位0。因为第一位为符号位,如果是1那么就是负数了。
  • 接下来的 41 位存储毫秒级时间戳,2^41 大概可以使用69年。
  • 再接来就是10位存储机器码,包括 5 位dataCenterId 和 5 位 workerId。最多可以部署2^10=1024台机器。
  • 最后12位存储序列号。统一毫秒时间戳时,通过这个递增的序列号来区分。即对于同一台机器而言,同一毫秒时间戳下可以生成 2^12=4096 个不重复id

在这里插入图片描述

雪花算法其实是强依赖于时间戳的,因为我们看上面生成的几个数字,我们唯一不可控的就是时间,如果发生了时钟回拨有可能会发生id生成一样了。

所以雪花算法适合那些与时间有强关联的业务 ,比如订单,交易之类的,需要有时间强相关的业务。

生成 ID 流程图

在这里插入图片描述
下面会结合代码讲述详细讲述这张图

代码实现

前置工作

既然是由上述的几个部分组成,那么我们可以先定义几个常量

// 时间戳的 占用位数
timestampBits = 41
// dataCenterId 的占用位数
dataCenterIdBits = 5
// workerId 的占用位数
workerIdBits = 5
// sequence 的占用位数
seqBits = 12

并且定义各个字段的最大值,防止越界

// timestamp 最大值, 相当于 2^41-1 = 2199023255551
timestampMaxValue = -1 ^ (-1 << timestampBits)
// dataCenterId 最大值, 相当于 2^5-1 = 31
dataCenterIdMaxValue = -1 ^ (-1 << dataCenterIdBits)
// workId 最大值, 相当于 2^5-1 = 31
workerIdMaxValue = -1 ^ (-1 << workerIdBits)
// sequence 最大值, 相当于 2^12-1 = 4095
seqMaxValue = -1 ^ (-1 << seqBits)

移动位数

// workId 向左移动12位(seqBits占用位数)因为这12位是sequence占的
workIdShift = 12
// dataCenterId 向左移动17位 (seqBits占用位数 + workId占用位数)
dataCenterIdShift = 17
// timestamp 向左移动22位 (seqBits占用位数 + workId占用位数 + dataCenterId占用位数)
timestampShift = 22

定义雪花生成器的对象,定义上面我们介绍的几个字段即可

type SnowflakeSeqGenerator struct {mu           *sync.Mutextimestamp    int64dataCenterId int64workerId     int64sequence     int64
}
func NewSnowflakeSeqGenerator(dataCenterId, workId int64) (r *SnowflakeSeqGenerator, err error) {if dataCenterId < 0 || dataCenterId > dataCenterIdMaxValue {err = fmt.Errorf("dataCenterId should between 0 and %d", dataCenterIdMaxValue-1)return}if workId < 0 || workId > workerIdMaxValue {err = fmt.Errorf("workId should between 0 and %d", dataCenterIdMaxValue-1)return}return &SnowflakeSeqGenerator{mu:           new(sync.Mutex),timestamp:    defaultInitValue - 1,dataCenterId: dataCenterId,workerId:     workId,sequence:     defaultInitValue,}, nil
}

具体算法

timestamp存储的是上一次的计算时间,如果当前的时间比上一次的时间还要小,那么说明发生了时钟回拨,那么此时我们不进行生产id,并且记录错误日志。

now := time.Now().UnixMilli()
if S.timestamp > now { // Clock callbacklog.Errorf("Clock moved backwards. Refusing to generate ID, last timestamp is %d, now is %d", S.timestamp, now)return ""
}

如果时间相等的话,那就说明这是在 同一毫秒时间戳内生成的 ,那么就进行seq的自旋,在这同一毫秒内最多生成 4095 个。如果超过4095的话,就等下一毫秒。

if S.timestamp == now {
// generate multiple IDs in the same millisecond, incrementing the sequence number to prevent conflictsS.sequence = (S.sequence + 1) & seqMaxValueif S.sequence == 0 {// sequence overflow, waiting for next millisecondfor now <= S.timestamp {now = time.Now().UnixMilli()}}
}

那么如果是不在同一毫秒内的话,seq直接用初始值就好了

else {// initialized sequences are used directly at different millisecond timestampsS.sequence = defaultInitValue
}

如果超过了69年,也就是时间戳超过了69年,也不能再继续生成了

tmp := now - epoch
if tmp > timestampMaxValue {log.Errorf("epoch should between 0 and %d", timestampMaxValue-1)return ""
}

记录这一次的计算时间,这样就可以和下一次的生成的时间做对比了。

S.timestamp = now

timestamp + dataCenterId + workId + sequence 拼凑一起,注意一点是我们最好用字符串输出,因为前端js中的number类型超过53位会溢出的

// combine the parts to generate the final ID and convert the 64-bit binary to decimal digits.
r := (tmp)<<timestampShift |(S.dataCenterId << dataCenterIdShift) |(S.workerId << workIdShift) |(S.sequence)return fmt.Sprintf("%d", r)

完整代码 & 测试文件

package sequenceimport ("fmt""sync""time""github.com/seata/seata-go/pkg/util/log"
)// SnowflakeSeqGenerator snowflake gen ids
// ref: https://en.wikipedia.org/wiki/Snowflake_IDvar (// set the beginning timeepoch = time.Date(2024, time.January, 01, 00, 00, 00, 00, time.UTC).UnixMilli()
)const (// timestamp occupancy bitstimestampBits = 41// dataCenterId occupancy bitsdataCenterIdBits = 5// workerId occupancy bitsworkerIdBits = 5// sequence occupancy bitsseqBits = 12// timestamp max value, just like 2^41-1 = 2199023255551timestampMaxValue = -1 ^ (-1 << timestampBits)// dataCenterId max value, just like 2^5-1 = 31dataCenterIdMaxValue = -1 ^ (-1 << dataCenterIdBits)// workId max value, just like 2^5-1 = 31workerIdMaxValue = -1 ^ (-1 << workerIdBits)// sequence max value, just like 2^12-1 = 4095seqMaxValue = -1 ^ (-1 << seqBits)// number of workId offsets (seqBits)workIdShift = 12// number of dataCenterId offsets (seqBits + workerIdBits)dataCenterIdShift = 17// number of timestamp offsets (seqBits + workerIdBits + dataCenterIdBits)timestampShift = 22defaultInitValue = 0
)type SnowflakeSeqGenerator struct {mu           *sync.Mutextimestamp    int64dataCenterId int64workerId     int64sequence     int64
}// NewSnowflakeSeqGenerator initiates the snowflake generator
func NewSnowflakeSeqGenerator(dataCenterId, workId int64) (r *SnowflakeSeqGenerator, err error) {if dataCenterId < 0 || dataCenterId > dataCenterIdMaxValue {err = fmt.Errorf("dataCenterId should between 0 and %d", dataCenterIdMaxValue-1)return}if workId < 0 || workId > workerIdMaxValue {err = fmt.Errorf("workId should between 0 and %d", dataCenterIdMaxValue-1)return}return &SnowflakeSeqGenerator{mu:           new(sync.Mutex),timestamp:    defaultInitValue - 1,dataCenterId: dataCenterId,workerId:     workId,sequence:     defaultInitValue,}, nil
}// GenerateId timestamp + dataCenterId + workId + sequence
func (S *SnowflakeSeqGenerator) GenerateId(entity string, ruleName string) string {S.mu.Lock()defer S.mu.Unlock()now := time.Now().UnixMilli()if S.timestamp > now { // Clock callbacklog.Errorf("Clock moved backwards. Refusing to generate ID, last timestamp is %d, now is %d", S.timestamp, now)return ""}if S.timestamp == now {// generate multiple IDs in the same millisecond, incrementing the sequence number to prevent conflictsS.sequence = (S.sequence + 1) & seqMaxValueif S.sequence == 0 {// sequence overflow, waiting for next millisecondfor now <= S.timestamp {now = time.Now().UnixMilli()}}} else {// initialized sequences are used directly at different millisecond timestampsS.sequence = defaultInitValue}tmp := now - epochif tmp > timestampMaxValue {log.Errorf("epoch should between 0 and %d", timestampMaxValue-1)return ""}S.timestamp = now// combine the parts to generate the final ID and convert the 64-bit binary to decimal digits.r := (tmp)<<timestampShift |(S.dataCenterId << dataCenterIdShift) |(S.workerId << workIdShift) |(S.sequence)return fmt.Sprintf("%d", r)
}

测试文件

func TestSnowflakeSeqGenerator_GenerateId(t *testing.T) {var dataCenterId, workId int64 = 1, 1generator, err := NewSnowflakeSeqGenerator(dataCenterId, workId)if err != nil {t.Error(err)return}var x, y stringfor i := 0; i < 100; i++ {y = generator.GenerateId("", "")if x == y {t.Errorf("x(%s) & y(%s) are the same", x, y)}x = y}
}

这篇关于分布式ID生成算法|雪花算法 Snowflake | Go实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/773088

相关文章

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详

Python实现Excel批量样式修改器(附完整代码)

《Python实现Excel批量样式修改器(附完整代码)》这篇文章主要为大家详细介绍了如何使用Python实现一个Excel批量样式修改器,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一... 目录前言功能特性核心功能界面特性系统要求安装说明使用指南基本操作流程高级功能技术实现核心技术栈关键函

Java实现字节字符转bcd编码

《Java实现字节字符转bcd编码》BCD是一种将十进制数字编码为二进制的表示方式,常用于数字显示和存储,本文将介绍如何在Java中实现字节字符转BCD码的过程,需要的小伙伴可以了解下... 目录前言BCD码是什么Java实现字节转bcd编码方法补充总结前言BCD码(Binary-Coded Decima

SpringBoot全局域名替换的实现

《SpringBoot全局域名替换的实现》本文主要介绍了SpringBoot全局域名替换的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录 项目结构⚙️ 配置文件application.yml️ 配置类AppProperties.Ja

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC