CVPR2024 进一步提升超分重建质量,中科大提出用于图像超分的语义感知判别器SeD,即将开源

本文主要是介绍CVPR2024 进一步提升超分重建质量,中科大提出用于图像超分的语义感知判别器SeD,即将开源,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

本文首发: AIWalker,欢迎关注~

https://arxiv.org/abs/2402.19387
https://github.com/lbc12345/SeD

本文概述

生成对抗网络(GAN)已被广泛用于恢复图像超分辨率(SR)任务中的生动纹理。判别器使 SR 网络能够以对抗性训练的方式学习现实世界高质量图像的分布。然而,这种分布学习过于粗粒度,容易受到虚拟纹理的影响,导致生成结果违反直觉。

为了解决这个问题,我们提出了一个名为 SeD 的简单而有效的语义感知判别器,它鼓励 SR 网络通过引入图像语义作为条件来学习更细粒度的分布。具体来说,我们的目标是从训练有素的语义提取器中挖掘图像的语义。在不同的语义下,鉴别器能够自适应地单独区分真假图像,从而引导 SR 网络学习更细粒度的语义感知纹理。为了获得准确和丰富的语义,我们充分利用最近流行的具有广泛数据集的预训练视觉模型(PVM),然后通过精心设计的空间交叉注意模块将其语义特征合并到鉴别器中。通过这种方式,我们提出的语义感知鉴别器使 SR 网络能够生成更加逼真和令人愉悦的图像。对两个典型任务(即 SR 和RealSR)的大量实验证明了我们提出的方法的有效性。

本文贡献

  • 我们指出了细粒度语义感知纹理生成对于 SR 的重要性,并通过将预训练视觉模型 (PVM) 的语义合并到判别器中,首次提出了用于 SR 任务的语义感知判别器 (SeD) 。
  • 为了更好地结合鉴别器的语义指导,我们提出了SeD的语义感知融合块(SeFB),它提取像素级语义并通过交叉注意方式将语义感知图像特征扭曲到鉴别器中。
  • 对两种典型 SR 任务(即经典图像 SR 和真实世界图像 SR)的大量实验揭示了我们提出的 SeD 的有效性。此外,我们的 SeD 可以以即插即用的方式轻松集成到基于 GAN 的 SR 方法的许多基准中。

本文方案

所提提出的语义感知鉴别器(SeD)的整体框架如图2所示。给定低分辨率图像 I l I_l Il,我们可以首先获得超分辨率图像 I s I_s Is。然后使用判别器𝐷来区分 I s I_s Is和高分辨率图像 I h I_ℎ Ih,强制 SR 网络生成类似真实的图像
。然而,普通判别器仅考虑图像的粗粒度分布,而忽略图像的语义。这将导致 SR 网络产生虚假甚至更糟糕的纹理。

一个有前途的纹理生成应该满足其语义信息。因此,我们的目标是实现语义感知鉴别器,它利用高分辨率图像 I h I_h Ih的语义作为条件。在这里,我们将大视觉模型作为语义提取器,表示为 ϕ \phi ϕ。我们的目标是实现更细粒度的语义感知纹理生成,其目标是
P ( I s ∣ ϕ ( I h ) ) = P ( I h ∣ ϕ ( I h ) ) P(I_s | \phi(I_h)) = P(I_h | \phi(I_h)) P(Isϕ(Ih))=P(Ihϕ(Ih))

因此,如图2所示,高分辨率图像 I h I_ℎ Ih将送入到固定的预训练语义提取器中提取语义 ϕ ( I h ) \phi(I_ℎ) ϕ(Ih),然后SeFB模块对超分图像特征与高分辨率图像特征变换并送入到判别器中。基于语义感知特征,鉴别器可以实现语义感知分布测量。

Semantic Excavation

我们采用预训练的 CLIP“RN50”模型作为语义提取器。具体来说,“RN50”由四层组成,随着层数的增加,特征的分辨率被下采样,语义变得更加抽象。为了研究哪一层更适合我们的语义挖掘,我们系统地对这四层进行实验,并通过实验发现第三层的语义特征是最优的

Semantic-aware Fusion Block

SeFB的架构如图2©所示,我们的目标是将语义感知纹理从图像扭曲到鉴别器,从而强制鉴别器聚焦关于语义感知纹理的分布。因此,在图 2© 中,语义 S h S_ℎ Sh 被传递到自注意力模块,然后作为查询馈送到交叉注意力模块.

Extension to Various Discriminators

在本文中,我们将提出的 SeD 合并到两个流行的判别器中,包括 patch-wise 判别器和 Pixel-wise 判别器。如图 2(d)所示,分片语义感知鉴别器由三个 SeFB 和两个卷积层组成。对于逐像素鉴别器,我们遵循中的方法并利用 U-Net 架构作为主干。我们在浅层特征提取阶段用我们提出的 SeFB 替换原始卷积层。

本文实验

推荐阅读

  • 超越SwinIR,Mamba入局图像复原,达成新SOTA
  • 入局CV,Mamba再显神威!华科王兴刚团队首次将Mamba引入ViT,更高精度、更快速度、更低显存!
  • Swin版VMamba来了!精度再度提升,VMamba-S达成83.5%,超越Swin-S,已开源!
  • MiOIR | 直面 “多合一”图像复原,港理工张磊团队提出MiOIR,融顺序学习与提示学习于一体!
  • NAFNet :无需非线性激活,真“反直觉”!但复原性能也是真强!
  • 真实用!ETH团以合成数据+Swin-Conv构建新型实用盲图像降噪
  • ELAN | 比SwinIR快4倍,图像超分中更高效Transformer应用探索

这篇关于CVPR2024 进一步提升超分重建质量,中科大提出用于图像超分的语义感知判别器SeD,即将开源的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/770925

相关文章

基于Python开发一个图像水印批量添加工具

《基于Python开发一个图像水印批量添加工具》在当今数字化内容爆炸式增长的时代,图像版权保护已成为创作者和企业的核心需求,本方案将详细介绍一个基于PythonPIL库的工业级图像水印解决方案,有需要... 目录一、系统架构设计1.1 整体处理流程1.2 类结构设计(扩展版本)二、核心算法深入解析2.1 自

PowerShell中15个提升运维效率关键命令实战指南

《PowerShell中15个提升运维效率关键命令实战指南》作为网络安全专业人员的必备技能,PowerShell在系统管理、日志分析、威胁检测和自动化响应方面展现出强大能力,下面我们就来看看15个提升... 目录一、PowerShell在网络安全中的战略价值二、网络安全关键场景命令实战1. 系统安全基线核查

Mysql中isnull,ifnull,nullif的用法及语义详解

《Mysql中isnull,ifnull,nullif的用法及语义详解》MySQL中ISNULL判断表达式是否为NULL,IFNULL替换NULL值为指定值,NULLIF在表达式相等时返回NULL,用... 目录mysql中isnull,ifnull,nullif的用法1. ISNULL(expr) → 判

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

Python+wxPython构建图像编辑器

《Python+wxPython构建图像编辑器》图像编辑应用是学习GUI编程和图像处理的绝佳项目,本教程中,我们将使用wxPython,一个跨平台的PythonGUI工具包,构建一个简单的... 目录引言环境设置创建主窗口加载和显示图像实现绘制工具矩形绘制箭头绘制文字绘制临时绘制处理缩放和旋转缩放旋转保存编

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj

使用Python实现图像LBP特征提取的操作方法

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方... 目录一、LBP特征介绍二、LBP特征描述三、一些改进版本的LBP1.圆形LBP算子2.旋转不变的LB

OpenCV图像形态学的实现

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起... 目录一、图像形态学简介二、腐蚀(Erosion)1. 原理2. OpenCV 实现三、膨胀China编程(