OpenCV图像形态学的实现

2025-04-14 16:50
文章标签 实现 图像 opencv 形态学

本文主要是介绍OpenCV图像形态学的实现,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《OpenCV图像形态学的实现》本文主要介绍了OpenCV图像形态学的实现,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算,文中通过示例代码介绍的非常详细,需要的朋友们下面随着小编来一起...

在图像处理领域,图像形态学是一种基于形状进行图像分析的有力工具,广泛应用于图像分割、特征提取、边缘检测、图像降噪等多个方面。借助 OpenCV 这个强大的计算机视觉库,我们可以轻松实现各种图像形态学操作。本文将深入探讨图像形态学的基本原理,并结合 OpenCV 的代码示例,介绍腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算等常见的形态学操作。

一、图像形态学简介

图像形态学以数学形态学为基础,通过对图像中的像素进行特定的集合运算,改变图像中物体的形状和结构。其核心操作是使用一个称为结构元素(也叫核)的小矩阵,在图像上滑动,对每个像素及其邻域进行操作,从而实现对图像的处理。在 OpenCV 中,提供了丰富的函数和工具,帮助我们进行各种图像形态学处理。

二、腐蚀(Erosion)

1. 原理

腐蚀是一种基本的图像形态学操作,其作用是 “收缩” 或 “细化” 图像中的物体。具体来说,腐蚀操作以结构元素为模板,对图像中的每个像素进行检查。如果结构元素覆盖的所有像素都为 1(对于二值图像而言),则中心像素保持不变,否则中心像素被设置为 0。通俗地讲,腐蚀操作会将物体的边界向内部收缩,从而去除图像中的一些小的噪声点和毛刺。例如,对于一个白色物体在黑色背景上的二值图像,腐蚀操作会使白色物体的面积变小。

2. OpenCV 实现

在 OpenCV 中,使用cv2.erode()函数实现腐蚀操作。该函数的第一个参数为输入图像,第二个参数为结构元素,第三个参数为迭代次数(可选,默认为 1)。下面通过一个简单的示例来展示如何使用cv2.erode()进行腐蚀操作:

import cv2
import numpy as np
import matplotlib.pyplot as plt
# 读取图像并转换为灰度图
img = cv2.imread('test.jpg', 0)
# 创建结构元素,这里使用5x5的矩形结构元素
kernel = np.ones((5, 5), np.uint8)
# 进行腐蚀操作
eroded = cv2.erode(img, kernel, iterations = 1)
# 显示结果
plt.subplot(121), plt.imshow(img, cmap = 'gray'), plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(eroded, cmap = 'gray'), plt.title('Eroded')
plt.xticks([]), plt.yticks([])
plt.show()

三、膨胀(Dilation)

1. 原理

膨胀是与腐蚀相反的操作,其作用是 “扩展” 或 “加粗” 图像中的物体。膨胀操作同样以结构元素为模板,对图像中的每个像素进行检查。只要结构元素覆盖的像素中有一个为 1(对于二值图像而言),则中心像素被设置为 1。膨胀操作可以填补图像中的小空洞,连接断裂的物体,扩大物体的面积。例如,在检测物体轮廓时,膨胀操作可以帮助我们更完整地获取物体的轮廓。

2. OpenCV 实现

在 OpenCV 中,使用cv2.dilate()函数实现膨胀操作。该函数的参数与cv2.erode()类似,第一个参数为输入图像,第二个参数为结构元素,第三个参数为迭代次数(可选,默认为 1)。下面是使用cv2.dilate()进行膨胀操作的示例代码:

import cv2
import numpy as np
import matplotlib.pyplot as plt
# 读取图像并转换为灰度图
img = cv2.imread('test.jpg', 0)
# 创建结构元素,这里使用5x5的矩形结构元素
kernel = np.ones((5, 5), np.uint8)
# 进行膨胀操作
dilated = cv2.dilate(img, kernel, iterations = 1)
# 显示结果
plt.subplot(121), plt.imshow(img, cmap = 'gray'), plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(dilated, cmap = 'grazGVLltzy'), plt.title('Dilated')
plt.xticks([]), plt.yticks([])
plt.show()

四、开运算(Opening)

1. 原理

开运算由腐蚀和膨胀两个操作组成,先对图像进行腐蚀操作,再进行膨胀操作。开运算可以去除图像中的小噪声点,平滑物体的轮廓,断开狭窄的连接,而不会明显改变物体的面积。对于含有噪声的二值图像,开运算能够有效地去除噪声,保留主要的物体结构。

2. OpenCV 实现

在 OpenCV 中,使用cv2.morphologyEx()函数并指定操作类型为cv2.MORPH_OPEN来实现开运算。该函数的第一个参数为输入图像,第二个参数为操作类型,第三个参数为结构元素。以下是实现开运算的示例代码:

import cv2
import numpy as np
import matplotlib.pyplot as plt
# 读取图像并转换为灰度图
img = cv2.imread('test.jpg', 0)
# 创建结构元素,这里使用5x5的矩形结构元素
kernel = np.ones((5, 5), np.uint8)
# 进行开运算
opened = cv2.morphologyEx(img, cv2.MORPH_OPEN, kernel)
# 显示结果
plt.subplot(121), plt.imshow(img, cmap = 'gray'), plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(opened, cmap = 'gray'), plt.title('Opened')
plt.xticks([]), plt.yticks([])
plt.show()

五、闭运算(Closing)

1. 原理

闭运算同样由腐蚀和膨胀两个操作组成,但顺序与开运算相反,先进行膨胀操作,再进行腐蚀操作。闭运算可以填补物体内部的小空洞,连接邻近的物体,平滑物体的轮廓,同时保持物体的整体形状和面积。在处理含有孔洞的物体图像时,闭运算能够有效地填补孔洞,使物体的形状更加完整。

2. OpenCV 实现

在 OpenCV 中,使用cv2.morphologyEx()函数并指定操作类型为cv2.MORPH_CLOSING来实现闭运算。示例代码如下:

import cv2
import numpy as np
import matplotlib.pyplot as plt
# 读取图像并转换为灰度图
img = cv2.imread('test.jpg', 0)
# 创建结构元素,这里使用5x5的矩形结构元素
kernel = np.ones((5, 5), np.uint8)
# 进行闭运算
closed = cv2.morphologyEx(img, cv2.MORPH_CLOSING, kernel)
# 显示结果
plt.subplot(121), plt.imshow(img, cmap = 'gray'), plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(closed, cmap = 'gray'), plt.title('Closed')
plt.xticks([]), plt.yticks([])
plt.show()

六、梯度运算(Morphological Gradient)

1. 原理

形态学梯度运算通过膨胀和腐蚀操作的差值来获取图像中物体的轮廓。具体来说,梯度运算的结果等于膨胀后的图像减去腐蚀后的图像。这样可以突出图像中物体的边缘,使物体的轮廓更加明显。形态学梯度运算常用于边缘检测和物体形状的提取。

2. OpenCV 实现

在 OpenCV 中,使用cv2.morphologyEx()函数并指定操作类型为cv2.MORPH_GRADIENT来实现梯度运算。示例代码如下:

import cv2
import numpy as np
import matplotlib.pyplot as plt
# 读取图像并转换为灰度图
img = cv2.imread('test.jpg', 0)
# 创建结构元素,这里使用5x5的矩形结构元素
kernel = np.ones((5, 5), np.uint8)
# 进行梯度运算
gradient = cv2.morphologyEx(img, cv2.MORPH_GRADIENT, kernel)
# 显示结果
plt.subplot(121), plt.imshow(img, cmap = 'gray'), plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(gradient, cmap = 'gray'), plt.title('Gradient')
plt.xticks([]), plt.yticks([])
plt.show()

七、顶帽运算(Top - Hat)

1. 原理

顶帽运算,也叫礼帽运算,其结果为原始图像与图像开运算的差值。即顶帽图像 = 原始图像 - 开运算图像。开运算会平滑物体轮廓、去除小噪声,但也会使图像中较亮的部分有所损失。顶帽运算能够分离出比邻近点亮一些的斑块,突出图像中的微小细节,在提取图像中的明亮区域或噪声方面非常有用。例如,在文本检测中,顶帽运算可以帮助突出文本的细节。

2. OpenCV 实现

在 OpenCwww.chinasem.cnV 中,通过cv2.morphologyEx()函数并指定操作类型为cv2.MORPH_TOPHAT来实现顶帽运算。下面是实现顶帽运算的代码示例:

import cv2
import numpy as np
import matplotlib.pyplot as plt
# 读取图像并转换为灰度图
img = cv2.imread('test.jpg', 0)
# 创建结构元素,这里使用5x5的矩形结构元素
kernel = np.ones((5, 5), np.uint8)
# 进行顶帽运算
tophat = cv2.morphologyEx(img, cv2.MORPH_TOPHAT, kernel)
# 显示结果
plt.subplot(121), plt.imshow(img, cmap = 'gray'), plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(tophat, cmap = 'gray'), plt.title('Top - Hat')
plt.xticks([]), plt.yticks([])
plt.show()

八、黑帽运算(Black - Hat)

1. 原理

黑帽运算与顶帽运算相对,其结果为图像闭运算与原始图像的差值。即黑帽图像 = 闭运算图像 - 原始图像。闭运算能够填补物体内部的小空洞、连接邻近物体。黑帽运算有助于分离出比邻近点暗一些的斑块,突出图像中相对较暗的区域,在检测图像中的暗细节或背景特征时十分有效。比如在检测深色物体时,黑帽运算能帮助增强物体的特征。

2. OpenCV 实现

在 OpenCV 中,通过cv2.morphologyEx()函数并指定操作类型为cv2.MORPH_BLACKHAT来实现黑帽运算。代码示例如下:

import cv2
import numpy as np
import matplotlib.pyplot as plt
# 读取图像并转换为灰度图
img = cv2.imread('test.jpg', 0)
# 创建结构元素,这里使用5x5的矩形结构元素
kernel = np.ones((5, 5), np.uint8)
# 进行黑帽运算
blackhat = cv2.morpholandroidogyEx(img, cv2.MORPH_BLACKHAT, kernel)
# 显示结果
plt.subplot(121), plt.imshow(img, cmap = 'gray'), plt.title('Original')
plt.xticks([]), plt.yticks([])
plt.subplot(122), plt.imshow(blackhat, cmap = 'gray'), plt.title('Black - Hat')
plt.xticks([]), plt.yticks([])
plt.show()

九、总结

本文详细介绍了 OpenCV 中的图像形态学处理技术,包括腐蚀、膨胀、开运算、闭运算、梯度运算、顶帽运算和黑帽运算。每种操作都有其独特的原理和适用场景。腐蚀和膨胀是基础操作,开运算、闭运算、顶帽运算和黑帽运算基于它们组合而成,用于不同的图像特征提取与处理。梯度运算则专注于突出物体边缘。在实际应用中,我们可以根据图像的特点和处理需求,灵活组合这些形态学操作,达到最佳的处理效果。

到此这篇关于OpenCV图像形态学的实现的文章就介绍到这了,更多相关OpenCV图像形态学内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持编程python栈(www.chinasem.cn)!

这篇关于OpenCV图像形态学的实现的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154215

相关文章

Java StringBuilder 实现原理全攻略

《JavaStringBuilder实现原理全攻略》StringBuilder是Java提供的可变字符序列类,位于java.lang包中,专门用于高效处理字符串的拼接和修改操作,本文给大家介绍Ja... 目录一、StringBuilder 基本概述核心特性二、StringBuilder 核心实现2.1 内部

Android实现图片浏览功能的示例详解(附带源码)

《Android实现图片浏览功能的示例详解(附带源码)》在许多应用中,都需要展示图片并支持用户进行浏览,本文主要为大家介绍了如何通过Android实现图片浏览功能,感兴趣的小伙伴可以跟随小编一起学习一... 目录一、项目背景详细介绍二、项目需求详细介绍三、相关技术详细介绍四、实现思路详细介绍五、完整实现代码

SpringBoot AspectJ切面配合自定义注解实现权限校验的示例详解

《SpringBootAspectJ切面配合自定义注解实现权限校验的示例详解》本文章介绍了如何通过创建自定义的权限校验注解,配合AspectJ切面拦截注解实现权限校验,本文结合实例代码给大家介绍的非... 目录1. 创建权限校验注解2. 创建ASPectJ切面拦截注解校验权限3. 用法示例A. 参考文章本文

SpringBoot集成redisson实现延时队列教程

《SpringBoot集成redisson实现延时队列教程》文章介绍了使用Redisson实现延迟队列的完整步骤,包括依赖导入、Redis配置、工具类封装、业务枚举定义、执行器实现、Bean创建、消费... 目录1、先给项目导入Redisson依赖2、配置redis3、创建 RedissonConfig 配

Python的Darts库实现时间序列预测

《Python的Darts库实现时间序列预测》Darts一个集统计、机器学习与深度学习模型于一体的Python时间序列预测库,本文主要介绍了Python的Darts库实现时间序列预测,感兴趣的可以了解... 目录目录一、什么是 Darts?二、安装与基本配置安装 Darts导入基础模块三、时间序列数据结构与

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

C#实现千万数据秒级导入的代码

《C#实现千万数据秒级导入的代码》在实际开发中excel导入很常见,现代社会中很容易遇到大数据处理业务,所以本文我就给大家分享一下千万数据秒级导入怎么实现,文中有详细的代码示例供大家参考,需要的朋友可... 目录前言一、数据存储二、处理逻辑优化前代码处理逻辑优化后的代码总结前言在实际开发中excel导入很

SpringBoot+RustFS 实现文件切片极速上传的实例代码

《SpringBoot+RustFS实现文件切片极速上传的实例代码》本文介绍利用SpringBoot和RustFS构建高性能文件切片上传系统,实现大文件秒传、断点续传和分片上传等功能,具有一定的参考... 目录一、为什么选择 RustFS + SpringBoot?二、环境准备与部署2.1 安装 RustF

Nginx部署HTTP/3的实现步骤

《Nginx部署HTTP/3的实现步骤》本文介绍了在Nginx中部署HTTP/3的详细步骤,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一起学... 目录前提条件第一步:安装必要的依赖库第二步:获取并构建 BoringSSL第三步:获取 Nginx

MyBatis Plus实现时间字段自动填充的完整方案

《MyBatisPlus实现时间字段自动填充的完整方案》在日常开发中,我们经常需要记录数据的创建时间和更新时间,传统的做法是在每次插入或更新操作时手动设置这些时间字段,这种方式不仅繁琐,还容易遗漏,... 目录前言解决目标技术栈实现步骤1. 实体类注解配置2. 创建元数据处理器3. 服务层代码优化填充机制详