使用Python实现图像LBP特征提取的操作方法

2025-04-22 16:50

本文主要是介绍使用Python实现图像LBP特征提取的操作方法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

《使用Python实现图像LBP特征提取的操作方法》LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力,本文给大家介绍了如何使用Python实现图像LBP特征提取的操作方...

一、LBP特征介绍

LBP特征叫做局部二值模式,常用于纹理特征提取,并在纹理分类中具有较强的区分能力。它主要是利用结构法思想分析固定窗口特征,再利用统计法做整体的特征提取,是一种理论简单但功能强大的纹理分析算法。

LBP的基本思想:它利用图像中的每一个点和邻域中点的灰度值的差异构成图像的细节纹理,用其中心像素的灰度值作为阈值,与它的邻域中的像素灰度值相比较得到一个_8bit的二进制码_来表达局部纹理特征。

二、LBP特征描述

原始的LBP算子定义为在3×3的窗口内,以窗口中心像素为阈值,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位 置被标记为1,否则为0。这样,3×3邻域内的8个点经比较可产生8位二进制(通常转换为十进制数即LBP码,共256种),即得到该窗口中心像素点的LBP 值,并用这个值来反映该区域的纹理信息。

使用Python实现图像LBP特征提取的操作方法

对于一幅大小是W*H的图像,因为边缘像素无法计算8位的LBP值,所以将LBP值转换为灰度图像时,它的大小是(W-2)*(H-2).

三、一些改进版本的LBP

1.圆形LBP算子

圆形LBP算子即采用以中心点为圆心的圆形邻域代替上文中的正方形邻域。邻域尺寸可以由半径R和采样点P确定。

使用Python实现图像LBP特征提取的操作方法

2.旋转不变的LBP算子

上文中可以看出,LBP算子是灰度不变的,但却_不是旋转不变的,图像的旋转就会得到不同的LBP值。因此将LBP算子进行了扩展,提出了具有旋转不变性的LBP算子,即不断旋转圆形邻域得到一系列初始定义的LBP值,取其最小值作为该邻域的LBP值_。

举一个简单的例子,对于11110000来说,其旋转后能够得到11100001、10000111等值。这一个算子的旋转不变的LBP值就是其旋转后能得到的最小值00001111。

3.LBP等价模式

为了解决LBP模式过多的问题,提出了“等价模式”这一个概念。当某个LBP所对应的循环二进制数从0到1或从1到0最多有两次跳变时,该LBP所对应的二进制就称为一个等价模式类。如00000000(0次跳变),00000111(只含一次从0到1的跳变),10001111(先由1跳到0,再由0跳到1,共两次跳变)都是等价模式类。

这里对“模式”进行具体阐述:“模式”可以理解为LBP特征值的范围、种类等等。比如常用的3*3大小的正方形LBP算子的LBP模式就是256。引入这个“等价模式”主要是想要减少模式的数量,方便运算。

在统计时可以将这些等价模式对应的LBP的值按照大小进行映射;将其他不等价的模式归为一类。

比如,一种常用的操作就是将256中LBP算子中58种等价模式按照大小映射到0-57中,将其余的不属于等价模式的值规定为58。比如0被映射为0,255(也是一个等价模式,0次跳变)就被映射为57。具体操作可以再下面的代码中进一步查看。当然,读者也可以根据需要自己定义其他的映射法则。

经过这种等价操作,模式数量从2P种减少为 P(P-1)+2种。

四、提取LBP算子的步骤

  • 首先将检测窗口划分为16×16的小区域(cell)

  • 对于每个cell中的一个像素,将相邻的8个像素的灰度值与其进行比较,若周围像素值大于中心像素值,则该像素点的位置被标记为1,否则为0。这样,3×3邻域内的8个点经比较可产生8位二进制数,即得到该窗口中心像素点的LBP值;

  • 然后计算每个cell的直方图,即每个数字(假定是十进制数LBP值)出现的频率;然后对该直方图进行归一化处理。

  • 最后_将得到的每个cell的统计直方图连接成为一个特征向量_,也就是整幅图的LBP纹理特征向量;

  • 最后便可利用SVM或者其他机器学习算法进行分类了。

五、提取效果

下图展示的效果依次为原图、圆形LBP算子提取结果、旋转不变LBP结果和等价模式的提取结果。

使用Python实现图像LBP特征提取的操作方法

六、代码实现China编程

对于初学者来说,手写代码实现提取特征效果能够锻炼代码能力和加强对特征的理解,读者可以参照下面的代码进行学习。

import cv2
import numpy as np
import matplotlib.pyplot as plt


class LBP():
    def __init__(self, img,cell_size):
        self.img = img #灰度图
        self.height, self.width = img.shape[:2]
        self.cell_size = cell_size
    
    # 传进来一个int型8位整数 找到旋转后最小的值
    def find_min(self,code):
        min = cod编程China编程e
  编程      for i in range(8):
            code = (code << 1) | (code >> 7)
            if code < min:
                min = code
        return min
            

    def lbp_circle(self):
        # 圆形LBP算子 这里写成了P=8,R=1 实际上这个与矩形3*3的LBP算子是一样的
        lbp = np.zeros((self.height, self.width), np.uint8) #统计的lbp是比原来少2行2列的,这里为了方便拆分成cell直接把四周的lbp的值置为0
        for i in range(1, self.height - 1):
            for j in range(1, self.width - 1):
                center = self.img[i, j]
                code = 0
                code |= (self.img[i - 1, j - 1] >= center) << 7
                code |= (self.img[i - 1, j] >= center) << 6
                code |= (self.img[i - 1, j + 1] >= center) << 5
                code |= (self.img[i, j + 1] >= center) << 4
                code |= (self.img[i + 1, j + 1] >= center) << 3
                code |= (self.img[i + 1, j] >= center) << 2
                code |= (self.img[i + 1, j - 1] >= center) << 1
                code |= (self.img[i, j - 1] >= center) << 0
                lbp[i, j] = code
        return lbp
    
    # 旋转不变模式
    def lbp_uniform(self):
        lbp = self.lbp_circle()
        # 圆形LBP算子 这里写成了P=8,R=1 实际上这个与矩形3*3的LBP算子是一样的
        lbp_uniform= np.zeros((self.height, self.width), np.uint8) #统计的lbp是比原来少2行2列的,这里为了方便拆分成cell直接把四周的lbp的值置为0
        # 旋转不变模式 找到旋转中的最小值
        for i in range(1, self.height - 1):
            for j in range(1, self.width - 1):
                lbp_uniform[i,j] = self.find_min(lbp[i, j])
        return lbp_uniform
    
    # 等价模式 这里将等价的模式按照大小映射到0-57中,然后将不等价模式标记为58
    def lbp_equivalent(self):
        # 定义等价模式的字典
        uniform_map = {0: 0, 1: 1, 2: 2, 3: 3, 4: 4, 6: 5, 7: 6, 8: 7, 12: 8,14: 9, 15: 10, 16: 11, 24: 12, 28: 13, 30: 14, 31: 15, 32: 16, 48: 17,
                         56: 18, 60: 19, 62: 20, 63: 21, 64: 22, 96: 23, 112: 24,120: 25, 124: 26, 126: 27, 127: 28, 128: 29, 129: 30, 131: 31, 135: 32,143: 33,
                         159: 34, 191: 35, 192: 36, 193: 37, 195: 38, 199: 39, 207: 40,223: 41, 224: 42, 225: 43, 227: 44, 231: 45, 239: 46, 240: 47, 241: 48,
                         243: 49, 247: 50, 248: 51, 249: 52, 251: 53, 252: 54, 253: 55, 254: 56,255: 57}
        lbp_equivalent = np.zeros((self.height, self.width), np.uint8) #统计的lbp是比原来少2行2列的,这里为了方便拆分成cell直接把四周的lbp的值置为0
        lbp = self.lbp_circle()
        for i in range(1, self.height - 1):
            for j in range(1, self.width - 1):
                if lbp[i, j] in uniform_map:
   China编程                 # 按照字典序赋值
                    lbp_equivalent[i, j] = uniform_map[lbp[i, j]]
                else:
                    lbp_equivalent[i, j] = 58
        return lbp_equivalent
    
    # 统计每个cell的直方图 并对其进行归一化 这里使用的是L2范数归一化
    def lbp_histogram(self,lbp):
        bin_size = lbp.max() + 1 # 获取直方图的维数
        # 统计每个cell的直方图
        cell_histogram = np.zeros((self.height // self.cell_size, self.width // self.cell_size, bin_size), np.float32) 
        for i in range(self.height // self.cell_size):
            for j in range(self.width // self.cell_size):
                cell = lbp[i * self.cell_size:(i + 1) * self.cell_size, j * self.cell_size:(j + 1) * self.cell_size]
                cell_histogram[i, j] = np.bincount(cell.flatten(), minlength=bin_size)
              # 对每个cell的直方图进行归一化 这里使python用的是L2范数归一化
        for i in range(self.height // self.cell_size):
            for j in range(self.width // self.cell_size):
                cell_histogram[i, j] = cell_histogram[i, j] / np.linalg.norm(cell_histogram[i, j])
        return cell_histogram
   
    # 拼接每个cell,得到最后的LBP特征向量
    def lbp_feature(self,lbp):
        cell_histogram = self.lbp_histogram(lbp)
        # 拼接每个cell,得到最后的LBP特征向量 是一个一维向量
        lbp_feature = np.zeros((cell_histogram.shape[0] * cell_histogram.shape[1] * cell_histogram.shape[2]), np.float32)
        for i in range(cell_histogram.shape[0]):
            for j in range(cell_histogram.shape[1]):
                for k in range(cell_histogram.shape[2]):
                    lbp_feature[i * cell_histogram.shape[1] * cell_histogram.shape[2] + j * cell_histogram.shape[2] + k] = cell_histogram[i, j, k]
        return lbp_feature
        
if __name__ == '__main__':
    img = cv2.imread('1.png')
    # 灰度图读取
    img = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
    lbp = LBP(img,16) #这里设置cell大小为16*16
    lbp_circle = lbp.lbp_circle()
    lbp_uniform = lbp.lbp_uniform()
    lbp_equivalent = lbp.lbp_equivalent()
    print("圆形LBP特征向量:",lbp.lbp_feature(lbp_circle))  # 圆形LBP特征向量
    print("旋转不变LBP特征向量:",lbp.lbp_feature(lbp_uniform))  # 旋转不变LBP特征向量
    print("等价LBP特征向量:",lbp.lbp_feature(lbp_equivalent))  # 等价LBP特征向量

     # 显示原图和 lbp
    img = cv2.imread('1.png')
    img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)  # 将 BGR 转换为 RGB 以正确显示
    plt.subplot(2, 2, 1)
    plt.imshow(img)
    plt.title('Original Image')
    plt.subplot(2, 2, 2)
    plt.imshow(lbp_circle, cmap='gray',vmin=0, vmax=255)
    plt.title('LBP Circle')
    plt.subplot(2, 2, 3)
    plt.imshow(lbp_uniform, cmap='gray',vmin=0, vmax=255)
    plt.title('LBP Uniform')
    plt.subplot(2, 2, 4)
    plt.imshow(lbp_equivalent, cmap='gray',vmin=0, vmax=255)
    plt.title('LBP Equivalent')

    # 保存图像
    plt.savefig('1_lbp_result.png')

    plt.show()

到此这篇关于使用python实现图像LBP特征提取的操作方法的文章就介绍到这了,更多相关Python 图像LBP提取内容请搜索China编程(www.chinasem.cn)以前的文章或继续浏览下面的相关文章希望大家以后多多支持China编程(www.chinasem.cn)!

这篇关于使用Python实现图像LBP特征提取的操作方法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/1154326

相关文章

Java中流式并行操作parallelStream的原理和使用方法

《Java中流式并行操作parallelStream的原理和使用方法》本文详细介绍了Java中的并行流(parallelStream)的原理、正确使用方法以及在实际业务中的应用案例,并指出在使用并行流... 目录Java中流式并行操作parallelStream0. 问题的产生1. 什么是parallelS

C++中unordered_set哈希集合的实现

《C++中unordered_set哈希集合的实现》std::unordered_set是C++标准库中的无序关联容器,基于哈希表实现,具有元素唯一性和无序性特点,本文就来详细的介绍一下unorder... 目录一、概述二、头文件与命名空间三、常用方法与示例1. 构造与析构2. 迭代器与遍历3. 容量相关4

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

Linux jq命令的使用解读

《Linuxjq命令的使用解读》jq是一个强大的命令行工具,用于处理JSON数据,它可以用来查看、过滤、修改、格式化JSON数据,通过使用各种选项和过滤器,可以实现复杂的JSON处理任务... 目录一. 简介二. 选项2.1.2.2-c2.3-r2.4-R三. 字段提取3.1 普通字段3.2 数组字段四.

C++中悬垂引用(Dangling Reference) 的实现

《C++中悬垂引用(DanglingReference)的实现》C++中的悬垂引用指引用绑定的对象被销毁后引用仍存在的情况,会导致访问无效内存,下面就来详细的介绍一下产生的原因以及如何避免,感兴趣... 目录悬垂引用的产生原因1. 引用绑定到局部变量,变量超出作用域后销毁2. 引用绑定到动态分配的对象,对象

Linux kill正在执行的后台任务 kill进程组使用详解

《Linuxkill正在执行的后台任务kill进程组使用详解》文章介绍了两个脚本的功能和区别,以及执行这些脚本时遇到的进程管理问题,通过查看进程树、使用`kill`命令和`lsof`命令,分析了子... 目录零. 用到的命令一. 待执行的脚本二. 执行含子进程的脚本,并kill2.1 进程查看2.2 遇到的

SpringBoot基于注解实现数据库字段回填的完整方案

《SpringBoot基于注解实现数据库字段回填的完整方案》这篇文章主要为大家详细介绍了SpringBoot如何基于注解实现数据库字段回填的相关方法,文中的示例代码讲解详细,感兴趣的小伙伴可以了解... 目录数据库表pom.XMLRelationFieldRelationFieldMapping基础的一些代

Java HashMap的底层实现原理深度解析

《JavaHashMap的底层实现原理深度解析》HashMap基于数组+链表+红黑树结构,通过哈希算法和扩容机制优化性能,负载因子与树化阈值平衡效率,是Java开发必备的高效数据结构,本文给大家介绍... 目录一、概述:HashMap的宏观结构二、核心数据结构解析1. 数组(桶数组)2. 链表节点(Node

Java AOP面向切面编程的概念和实现方式

《JavaAOP面向切面编程的概念和实现方式》AOP是面向切面编程,通过动态代理将横切关注点(如日志、事务)与核心业务逻辑分离,提升代码复用性和可维护性,本文给大家介绍JavaAOP面向切面编程的概... 目录一、AOP 是什么?二、AOP 的核心概念与实现方式核心概念实现方式三、Spring AOP 的关

详解SpringBoot+Ehcache使用示例

《详解SpringBoot+Ehcache使用示例》本文介绍了SpringBoot中配置Ehcache、自定义get/set方式,并实际使用缓存的过程,文中通过示例代码介绍的非常详细,对大家的学习或者... 目录摘要概念内存与磁盘持久化存储:配置灵活性:编码示例引入依赖:配置ehcache.XML文件:配置