【AI绘画】免费GPU Tesla A100 32G算力部署Stable Diffusion

2024-03-03 12:44

本文主要是介绍【AI绘画】免费GPU Tesla A100 32G算力部署Stable Diffusion,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

免责声明

在阅读和实践本文提供的内容之前,请注意以下免责声明:

  • 侵权问题: 本文提供的信息仅供学习参考,不用做任何商业用途,如造成侵权,请私信我,我会立即删除,作者不对读者因使用本文所述方法而导致的任何损失或损害负责。

  • 信息准确性: 本文提供的信息可能随时更改,作者不保证文中所述方法在未来的软件更新中仍然有效。

  • 个人风险: 读者在按照本文提供的方法操作时,应该自行承担风险。作者不对读者因使用本文所述方法而导致的任何损失或损害负责。

  • 软件兼容性: 本文中提到的软件版本和兼容性可能会受到变化。读者应该在实施前查看相关软件的官方文档,以确保使用的软件版本相互兼容。

  • 个体差异: 不同的计算机环境、操作系统版本和其他因素可能导致实际操作效果有所不同。读者在实践中可能需要进行适当的调整。

  • 建议备份: 在进行重要操作之前,建议读者备份其数据和设置,以防万一发生意外情况。

  • 社区支持: 读者如果遇到问题,建议参考相关软件的官方社区或论坛,以获取更多帮助。

    文章目录

      • 免责声明
      • 1. 引言
        • 1.1 什么是Stable Diffusion
        • 1.2 AI Studio学习与实训社区
      • 2. 注册AI Studio账号
        • 2.1 通过邀请链接注册
        • 2.2 领取免费算力
      • 3. 创建Notebook项目
        • 3.1 选择基础版
        • 3.2 配置环境
      • 4. 拉取Stable Diffusion代码
      • 5. 更换pip镜像
      • 6. 安装依赖
        • 6.1 运行安装脚本
        • 6.2 解决网络问题
      • 7. 内网穿透
        • 7.1 ngrok内网穿透
        • 7.2 natapp内网穿透(国内速度较快)
      • 8. 项目目录结构
        • 8.1 插件保存位置
        • 8.2 模型保存位置
      • 9. 结论
        • 9.1 成功部署Stable Diffusion
        • 9.2 后续探索

1. 引言

1.1 什么是Stable Diffusion

Stable Diffusion是一个基于深度学习的图像生成工具,它使用扩散模型生成高质量的图像。该项目由AUTOMATIC1111开发并在GitHub上开源。

1.2 AI Studio学习与实训社区

AI Studio是百度推出的一个在线AI学习与实训社区,提供免费的GPU算力支持,用户可以在此平台上进行深度学习的项目开发和部署。

2. 注册AI Studio账号

2.1 通过邀请链接注册

点击以下链接注册AI Studio账号:AI Studio注册链接

2.2 领取免费算力

成功注册账号后,点击“我的创作”,可以领取免费算力。

3. 创建Notebook项目

3.1 选择基础版

点击“创建项目”,选择“Notebook”,然后选择“基础版”。

3.2 配置环境

-在这里插入图片描述
创建一个notebook项目

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
选择基础版我们先配环境
在这里插入图片描述在这里插入图片描述

4. 拉取Stable Diffusion代码

在Notebook中运行以下命令,拉取Stable Diffusion代码:

git clone https://gitclone.com/github.com/AUTOMATIC1111/stable-diffusion-webui.git

在这里插入图片描述

5. 更换pip镜像

在Notebook中运行以下命令,更换pip镜像源为阿里云:

mkdir -p ~/.pip
cat <<EOF > ~/.pip/pip.conf
[global]
timeout = 6000
index-url = https://mirrors.aliyun.com/pypi/simple
trusted-host = mirrors.aliyun.com
EOF

如果需要重新生成pip配置文件,可运行以下命令删除原有配置文件:

rm -rf ~/.pip

6. 安装依赖

6.1 运行安装脚本

进入stable-diffusion-webui目录,运行安装脚本:

cd stable-diffusion-webui/
./webui.sh --skip-torch-cuda-test

在这里插入图片描述
这里下载可能非常缓慢,你可以点击链接在本地先下载再上传直接安装whl

这里我发现Stable Diffusion同样恰好通过创建虚拟环境得以可配置PyTorch环境,虚拟环境位于stable-diffusion-webui/models/venv
【深度学习】不用Conda在PP飞桨Al Studio三个步骤安装永久PyTorch环境

或者多次Ctrl+Z重试切换到更好的网络
在这里插入图片描述
这里已经配置成功,可以看到尝试链接huggingface下载初始模型,由于我们连接不上这个网站,所以会一直卡到超时自动结束,你可以在他指定的文件夹创一个同名空文件暂时替代,或者自行上传模型。
/home/aistudio/stable-diffusion-webui/models/新建一个
v1-5-pruned-emaonly.safetensors

在这里插入图片描述
可以看到连接超时后仍然自动运行

6.2 解决网络问题

由于AI Studio的网络环境问题,可能会导致安装过程中下载依赖包很慢或下载失败。可以尝试多次运行安装脚本,或者手动下载依赖包并上传到Notebook中进行安装。

7. 内网穿透

7.1 ngrok内网穿透

https://ngrok.com/
在这里插入图片描述
注册获取<your_authtoken>,不能用QQ邮箱注册
在这里插入图片描述

在Notebook中运行以下命令,下载并安装ngrok:

wget https://bin.equinox.io/c/bNyj1mQVY4c/ngrok-v3-stable-linux-amd64.tgz
chmod +x ngrok
ngrok config add-authtoken  <your_authtoken>
./ngrok http 7860

注意:需要在ngrok官网注册账号并获取authtoken。
在这里插入图片描述

通过内网穿透得到的的Forwarding链接,你可以在任何设备上访问这个网址使用Stable Diffusion
在这里插入图片描述

7.2 natapp内网穿透(国内速度较快)

在Notebook中运行以下命令,下载并安装natapp:

wget https://cdn.natapp.cn/assets/downloads/clients/2_4_0/natapp_linux_amd64/natapp

注意:需要在natapp官网注册账号并获取配置文件。
在这里插入图片描述
natapp要实名认证,提前设置映射端口
在这里插入图片描述
Web协议,7860端口
在这里插入图片描述
注册购买后获得<your_authtoken>

chmod +x natapp
./natapp -authtoken=<your_authtoken>

在这里插入图片描述
通过内网穿透得到的的Forwarding链接,你可以在任何设备上访问这个网址使用Stable Diffusion

在这里插入图片描述

8. 项目目录结构

8.1 插件保存位置

Stable Diffusion的插件保存在stable-diffusion-webui/extensions目录下。

8.2 模型保存位置

Stable Diffusion的模型保存在stable-diffusion-webui/models目录下。
我们看一下项目目录
在这里插入图片描述
插件保存在这
在这里插入图片描述
模型保存在这
在这里插入图片描述

9. 结论

9.1 成功部署Stable Diffusion

按照以上步骤,就可以成功在AI Studio上部署Stable Diffusion,并利用免费的Tesla A100 GPU算力进行AI绘画。

9.2 后续探索

在成功部署Stable Diffusion之后,可以尝试使用不同的模型和插件,进行更多的AI绘画创作。同时,也可以结合其他的深度学习技术,进一步提高生成的图像质量。
你可以通过创建数据集wgetgit下载你需要的模型或插件

这篇关于【AI绘画】免费GPU Tesla A100 32G算力部署Stable Diffusion的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/769656

相关文章

conda安装GPU版pytorch默认却是cpu版本

《conda安装GPU版pytorch默认却是cpu版本》本文主要介绍了遇到Conda安装PyTorchGPU版本却默认安装CPU的问题,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的... 目录一、问题描述二、网上解决方案罗列【此节为反面方案罗列!!!】三、发现的根本原因[独家]3.1 p

Web技术与Nginx网站环境部署教程

《Web技术与Nginx网站环境部署教程》:本文主要介绍Web技术与Nginx网站环境部署教程,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、Web基础1.域名系统DNS2.Hosts文件3.DNS4.域名注册二.网页与html1.网页概述2.HTML概述3.

Spring AI 实现 STDIO和SSE MCP Server的过程详解

《SpringAI实现STDIO和SSEMCPServer的过程详解》STDIO方式是基于进程间通信,MCPClient和MCPServer运行在同一主机,主要用于本地集成、命令行工具等场景... 目录Spring AI 实现 STDIO和SSE MCP Server1.新建Spring Boot项目2.a

Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例

《Nginx使用Keepalived部署web集群(高可用高性能负载均衡)实战案例》本文介绍Nginx+Keepalived实现Web集群高可用负载均衡的部署与测试,涵盖架构设计、环境配置、健康检查、... 目录前言一、架构设计二、环境准备三、案例部署配置 前端 Keepalived配置 前端 Nginx

ubuntu如何部署Dify以及安装Docker? Dify安装部署指南

《ubuntu如何部署Dify以及安装Docker?Dify安装部署指南》Dify是一个开源的大模型应用开发平台,允许用户快速构建和部署基于大语言模型的应用,ubuntu如何部署Dify呢?详细请... Dify是个不错的开源LLM应用开发平台,提供从 Agent 构建到 AI workflow 编排、RA

ubuntu16.04如何部署dify? 在Linux上安装部署Dify的技巧

《ubuntu16.04如何部署dify?在Linux上安装部署Dify的技巧》随着云计算和容器技术的快速发展,Docker已经成为现代软件开发和部署的重要工具之一,Dify作为一款优秀的云原生应用... Dify 是一个基于 docker 的工作流管理工具,旨在简化机器学习和数据科学领域的多步骤工作流。它

Nginx部署React项目时重定向循环问题的解决方案

《Nginx部署React项目时重定向循环问题的解决方案》Nginx在处理React项目请求时出现重定向循环,通常是由于`try_files`配置错误或`root`路径配置不当导致的,本文给大家详细介... 目录问题原因1. try_files 配置错误2. root 路径错误解决方法1. 检查 try_f

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Spring Boot项目部署命令java -jar的各种参数及作用详解

《SpringBoot项目部署命令java-jar的各种参数及作用详解》:本文主要介绍SpringBoot项目部署命令java-jar的各种参数及作用的相关资料,包括设置内存大小、垃圾回收... 目录前言一、基础命令结构二、常见的 Java 命令参数1. 设置内存大小2. 配置垃圾回收器3. 配置线程栈大小

tomcat多实例部署的项目实践

《tomcat多实例部署的项目实践》Tomcat多实例是指在一台设备上运行多个Tomcat服务,这些Tomcat相互独立,本文主要介绍了tomcat多实例部署的项目实践,具有一定的参考价值,感兴趣的可... 目录1.创建项目目录,测试文China编程件2js.创建实例的安装目录3.准备实例的配置文件4.编辑实例的