381. 有线电视网络(网络流,最小割,《算法竞赛进阶指南》)

2024-03-03 08:28

本文主要是介绍381. 有线电视网络(网络流,最小割,《算法竞赛进阶指南》),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

381. 有线电视网络 - AcWing题库

给定一张 n 个点 m 条边的无向图,求最少去掉多少个点,可以使图不连通。

如果不管去掉多少个点,都无法使原图不连通,则直接返回 n。

输入格式

输入包含多组测试数据。

每组数据占一行,首先包含两个整数 n 和 m,接下来包含 m 对形如 (x,y) 的数对,形容点 x 与点 y 之间有一条边。

数对 (x,y) 中间不会包含空格,其余地方用一个空格隔开。

输出格式

每组数据输出一个结果,每个结果占一行。

数据范围

0≤n≤50

输入样例:
0 0
1 0
3 3 (0,1) (0,2) (1,2)
2 0
5 7 (0,1) (0,2) (1,3) (1,2) (1,4) (2,3) (3,4)
输出样例:
0
1
3
0
2

解析: 

通过删除某些点让无向图不连通。

如果是删除某些边使得无向图不连通,我们很容易想到使用最小割算法将割边删去。通过枚举源点 S 和汇点 T,然后使用最小割算法处理。

但本题要求将点删除,而非将边删除。我们需要将点转换成边看看是否能使用最小割算法。

拆点:

使用常见的拆点方式,将点拆成出点和入点,且出点和入点之间连一条边,边权为1,对应本题中要求求得点得数量。

简单割处理:  

由于本题只能删除点而不能删除边,所以我们要使得最小割算法不删除原图得边:将原图的边的容量设为正无穷。(最小割算法中的常用技巧,将不希望作为割边的边的容量设为正无穷) 

定义简单割:割边仅为有限容量的边形成的割称为简单割

 简单割具体证明参考:2325. 有向图破坏(二分图,最小点权覆盖,最小割,网络流)-CSDN博客 

证明简单割与要删掉的点的点割集存在一一对应的关系:

简单割=> 点割集
因为我们通过简单割求出的割边都是点内部的边,当我们把简单割里的边全删掉后,源点和汇点则不会联通了,这些构成“内部边”的点的集合就是点割集。

下面用反证法证明上面构造出来的点割集一定是符合题意的要删掉的点:

假设上面构造出来的点割集不符合题意,即把上面所有的点删掉,在原图里依然存在从源点到达汇点的路径,说明在原图中,存在一条不经过我们构造出来的点割集里的点的路径即不经过“点内部的边”,依然能从源点到达汇点,对应到流网络里则是存在一条从源点到汇点的不经过割边的路径,则说明源点与汇点在一个集合里,说明这不是一个割,与前提矛盾。因此反证得证。

点割集=> 简单割
这里的点割集指的是“极小点割集”

构造简单割的方法:

从源点开始dfs一遍,若经过点割集里的点,则停下不往前搜,若不是则往前搜,每次把搜到的点打个标记,这样标记了的点就是S集合,没有标记的点就是T集合,构成一个简单割C[S,T]因此我们可以证出简单割与割点集存在一一对应的关系。

考虑数量关系
由于我们建边的时候把入点到出点的边的容量设为1,则得到的简单割的割边和就是选到的点的数量,则可以得到:割点集的点的数量 = 简单割的割的容量和 ,因此:最小割点集 = 最小割

#include<iostream>
#include<string>
#include<cstring>
#include<cmath>
#include<ctime>
#include<algorithm>
#include<utility>
#include<stack>
#include<queue>
#include<vector>
#include<set>
#include<math.h>
#include<map>
#include<sstream>
#include<deque>
#include<unordered_map>
#include<unordered_set>
#include<bitset>
using namespace std;
typedef long long LL;
typedef unsigned long long ULL;
typedef pair<int, int> PII;
const int N = 1e2 + 10, M = (2500+50) * 2 + 10, INF = 0x3f3f3f3f;
int n, m, S, T;
int h[N], e[M], f[M], ne[M], idx;
int q[N], d[N], cur[N];void add(int a, int b, int c) {e[idx] = b, f[idx] = c, ne[idx] = h[a], h[a] = idx++;e[idx] = a, f[idx] = 0, ne[idx] = h[b], h[b] = idx++;
}bool bfs() {int hh = 0, tt = 0;memset(d, -1, sizeof d);q[0] = S, d[S] = 0, cur[S] = h[S];while (hh <= tt) {int t = q[hh++];for (int i = h[t]; i != -1; i = ne[i]) {int j = e[i];if (d[j] == -1 && f[i]) {d[j] = d[t] + 1;cur[j] = h[j];if (j == T)return 1;q[++tt] = j;}}}return 0;
}int find(int u, int limit) {if (u == T)return limit;int flow = 0;for (int i = cur[u]; i != -1 && flow < limit; i = ne[i]) {int j = e[i];cur[u] = i;if (d[j] == d[u] + 1 && f[i]) {int t = find(j, min(f[i], limit - flow));if (!t)d[j] = -1;f[i] -= t, f[i ^ 1] += t, flow += t;}}return flow;
}int dinic() {int ret = 0, flow;while (bfs())while (flow = find(S, INF))ret += flow;return ret;
}int main() {while (cin >> n >> m) {memset(h, -1, sizeof h);idx = 0;for (int i = 0; i < n; i++) {add(i, i + n, 1);}for (int i = 1,a,b; i <= m; i++) {scanf(" (%d,%d)", &a, &b);add(n + a, b, INF);add(n + b, a, INF);}int ans = n;for (int i = 0; i < n; i++) {for (int j = 0; j < i; j++) {S = n + i, T = j;for (int k = 0; k < idx; k += 2) {f[k] += f[k ^ 1];f[k ^ 1] = 0;}ans = min(ans, dinic());}}cout << ans << endl;}return 0;
}

这篇关于381. 有线电视网络(网络流,最小割,《算法竞赛进阶指南》)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/769051

相关文章

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

SpringBoot集成MyBatis实现SQL拦截器的实战指南

《SpringBoot集成MyBatis实现SQL拦截器的实战指南》这篇文章主要为大家详细介绍了SpringBoot集成MyBatis实现SQL拦截器的相关知识,文中的示例代码讲解详细,有需要的小伙伴... 目录一、为什么需要SQL拦截器?二、MyBATis拦截器基础2.1 核心接口:Interceptor

从入门到进阶讲解Python自动化Playwright实战指南

《从入门到进阶讲解Python自动化Playwright实战指南》Playwright是针对Python语言的纯自动化工具,它可以通过单个API自动执行Chromium,Firefox和WebKit... 目录Playwright 简介核心优势安装步骤观点与案例结合Playwright 核心功能从零开始学习

Java堆转储文件之1.6G大文件处理完整指南

《Java堆转储文件之1.6G大文件处理完整指南》堆转储文件是优化、分析内存消耗的重要工具,:本文主要介绍Java堆转储文件之1.6G大文件处理的相关资料,文中通过代码介绍的非常详细,需要的朋友可... 目录前言文件为什么这么大?如何处理这个文件?分析文件内容(推荐)删除文件(如果不需要)查看错误来源如何避

Java docx4j高效处理Word文档的实战指南

《Javadocx4j高效处理Word文档的实战指南》对于需要在Java应用程序中生成、修改或处理Word文档的开发者来说,docx4j是一个强大而专业的选择,下面我们就来看看docx4j的具体使用... 目录引言一、环境准备与基础配置1.1 Maven依赖配置1.2 初始化测试类二、增强版文档操作示例2.

PostgreSQL中rank()窗口函数实用指南与示例

《PostgreSQL中rank()窗口函数实用指南与示例》在数据分析和数据库管理中,经常需要对数据进行排名操作,PostgreSQL提供了强大的窗口函数rank(),可以方便地对结果集中的行进行排名... 目录一、rank()函数简介二、基础示例:部门内员工薪资排名示例数据排名查询三、高级应用示例1. 每

SpringBoot结合Docker进行容器化处理指南

《SpringBoot结合Docker进行容器化处理指南》在当今快速发展的软件工程领域,SpringBoot和Docker已经成为现代Java开发者的必备工具,本文将深入讲解如何将一个SpringBo... 目录前言一、为什么选择 Spring Bootjavascript + docker1. 快速部署与

创建Java keystore文件的完整指南及详细步骤

《创建Javakeystore文件的完整指南及详细步骤》本文详解Java中keystore的创建与配置,涵盖私钥管理、自签名与CA证书生成、SSL/TLS应用,强调安全存储及验证机制,确保通信加密和... 目录1. 秘密键(私钥)的理解与管理私钥的定义与重要性私钥的管理策略私钥的生成与存储2. 证书的创建与

Python包管理工具pip的升级指南

《Python包管理工具pip的升级指南》本文全面探讨Python包管理工具pip的升级策略,从基础升级方法到高级技巧,涵盖不同操作系统环境下的最佳实践,我们将深入分析pip的工作原理,介绍多种升级方... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核