【图论】【并集查找】【C++算法】928. 尽量减少恶意软件的传播 II

本文主要是介绍【图论】【并集查找】【C++算法】928. 尽量减少恶意软件的传播 II,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者推荐

动态规划的时间复杂度优化

涉及知识点

图论 并集查找

LeetCode928. 尽量减少恶意软件的传播 II

给定一个由 n 个节点组成的网络,用 n x n 个邻接矩阵 graph 表示。在节点网络中,只有当 graph[i][j] = 1 时,节点 i 能够直接连接到另一个节点 j。
一些节点 initial 最初被恶意软件感染。只要两个节点直接连接,且其中至少一个节点受到恶意软件的感染,那么两个节点都将被恶意软件感染。这种恶意软件的传播将继续,直到没有更多的节点可以被这种方式感染。
假设 M(initial) 是在恶意软件停止传播之后,整个网络中感染恶意软件的最终节点数。
我们可以从 initial 中删除一个节点,并完全移除该节点以及从该节点到任何其他节点的任何连接。
请返回移除后能够使 M(initial) 最小化的节点。如果有多个节点满足条件,返回索引 最小的节点 。
示例 1:
输入:graph = [[1,1,0],[1,1,0],[0,0,1]], initial = [0,1]
输出:0
示例 2:
输入:graph = [[1,1,0],[1,1,1],[0,1,1]], initial = [0,1]
输出:1
示例 3:
输入:graph = [[1,1,0,0],[1,1,1,0],[0,1,1,1],[0,0,1,1]], initial = [0,1]
输出:1
提示:
n == graph.length
n == graph[i].length
2 <= n <= 300
graph[i][j] 是 0 或 1.
graph[i][j] == graph[j][i]
graph[i][i] == 1
1 <= initial.length < n
0 <= initial[i] <= n - 1
initial 中每个整数都不同

并集查找

一,将非初始节点连接,行程若干连通区域。
二,计算各连通区域和几个初始节点直接相连。 直接相连:连通区域的某点有边和初始节点相连。间接相连:连通区域的某点通过某初始节点连接另外一个初始节点。
{ 一定感染 有两个或更多直接相连的初始节点 可以避免 只有一个直接相连的初始节点。 \begin{cases} 一定感染 & 有两个或更多直接相连的初始节点\\ 可以避免 &只有一个直接相连的初始节点。\\ \end{cases} {一定感染可以避免有两个或更多直接相连的初始节点只有一个直接相连的初始节点。
间接相连的初始节点不限,因为删除直接相连的节点后,间接相连的节点也断开了。

sum=有和初始节点连接的区域的节点总数量。
maxSub = M a x n : i n i t i a l Max\Large_{n:initial} Maxn:initial(只和n相连的区域的节点数量)

注意
一, 一个初始节点可能和一个区域连接多次。
二,删除任何初始节点都不会影响感染数量,返回最小的初始节点,而不是0。

代码

核心代码

class CUnionFind
{
public:CUnionFind(int iSize) :m_vNodeToRegion(iSize){for (int i = 0; i < iSize; i++){m_vNodeToRegion[i] = i;}m_iConnetRegionCount = iSize;}int GetConnectRegionIndex(int iNode){int& iConnectNO = m_vNodeToRegion[iNode];if (iNode == iConnectNO){return iNode;}return iConnectNO = GetConnectRegionIndex(iConnectNO);}void Union(int iNode1, int iNode2){const int iConnectNO1 = GetConnectRegionIndex(iNode1);const int iConnectNO2 = GetConnectRegionIndex(iNode2);if (iConnectNO1 == iConnectNO2){return;}m_iConnetRegionCount--;if (iConnectNO1 > iConnectNO2){UnionConnect(iConnectNO1, iConnectNO2);}else{UnionConnect(iConnectNO2, iConnectNO1);}}bool IsConnect(int iNode1, int iNode2){return GetConnectRegionIndex(iNode1) == GetConnectRegionIndex(iNode2);}int GetConnetRegionCount()const{return m_iConnetRegionCount;}vector<int> GetNodeCountOfRegion()//各联通区域的节点数量{const int iNodeSize = m_vNodeToRegion.size();vector<int> vRet(iNodeSize);for (int i = 0; i < iNodeSize; i++){vRet[GetConnectRegionIndex(i)]++;}return vRet;}std::unordered_map<int, vector<int>> GetNodeOfRegion(){std::unordered_map<int, vector<int>> ret;const int iNodeSize = m_vNodeToRegion.size();for (int i = 0; i < iNodeSize; i++){ret[GetConnectRegionIndex(i)].emplace_back(i);}return ret;}
private:void UnionConnect(int iFrom, int iTo){m_vNodeToRegion[iFrom] = iTo;}vector<int> m_vNodeToRegion;//各点所在联通区域的索引,本联通区域任意一点的索引,为了增加可理解性,用最小索引int m_iConnetRegionCount;
};class Solution {
public:int minMalwareSpread(vector<vector<int>>& graph, vector<int>& initial) {m_c = graph.size();set<int> setInit(initial.begin(), initial.end());CUnionFind uf(m_c);for (int i = 0; i < m_c; i++){if (setInit.count(i)){continue;}for (int j = i + 1; j < m_c; j++){if (setInit.count(j)){continue;}if (graph[i][j]){uf.Union(i, j);}}}unordered_map<int, int> mRegionInit;for (int i = 0; i < m_c; i++){if (!setInit.count(i)){continue;}for (int j = 0; j < m_c; j++){if (setInit.count(j)){continue;}if (!graph[i][j]){continue;}const int region = uf.GetConnectRegionIndex(j);if (mRegionInit.count(region) && (mRegionInit[region] != i )){//新旧初始节点必须不同mRegionInit[region] = -1;}else{mRegionInit[region] = i;}}}map<int, int> mSub;auto m = uf.GetNodeOfRegion();for (const auto& [region, init] : mRegionInit){	if (-1 != init){mSub[init] += m[region].size();}}int index = -1;int iMax = 0;for (const auto& [tmp, cnt] : mSub){if (cnt > iMax){iMax = cnt;index = tmp;}}return (-1 == index) ? *setInit.begin() : index;}int m_c;
};

测试用例

template<class T,class T2>
void Assert(const T& t1, const T2& t2)
{assert(t1 == t2);
}template<class T>
void Assert(const vector<T>& v1, const vector<T>& v2)
{if (v1.size() != v2.size()){assert(false);return;}for (int i = 0; i < v1.size(); i++){Assert(v1[i], v2[i]);}}int main()
{vector<vector<int>> graph;vector<int> initial;{Solution sln;graph = { {1,1,0},{1,1,0},{0,0,1} }, initial = { 0,1 };auto res = sln.minMalwareSpread(graph, initial);Assert(0, res);}{Solution sln;graph = { {1,1,0},{1,1,1},{0,1,1} }, initial = { 0,1 };auto res = sln.minMalwareSpread(graph, initial);Assert(1, res);}{Solution sln;graph = { {1,1,0,0},{1,1,1,0},{0,1,1,1},{0,0,1,1} }, initial = { 0,1 };auto res = sln.minMalwareSpread(graph, initial);Assert(1, res);}{Solution sln;graph = { {1,0,0,0,0,0,0,0,0},{0,1,0,0,0,0,0,0,0},{0,0,1,0,1,0,1,0,0},{0,0,0,1,0,0,0,0,0},{0,0,1,0,1,0,0,0,0},{0,0,0,0,0,1,0,0,0},{0,0,1,0,0,0,1,0,0},{0,0,0,0,0,0,0,1,0},{0,0,0,0,0,0,0,0,1} }, initial = { 6,0,4 };auto res = sln.minMalwareSpread(graph, initial);Assert(0, res);}{Solution sln;graph = { {1,0,0,0,0,0,0,0,1},{0,1,0,1,0,0,0,0,0},{0,0,1,1,0,1,0,0,0},{0,1,1,1,1,0,1,0,0},{0,0,0,1,1,1,0,0,0},{0,0,1,0,1,1,0,0,0},{0,0,0,1,0,0,1,1,0},{0,0,0,0,0,0,1,1,1},{1,0,0,0,0,0,0,1,1} }, initial = { 3,7 };auto res = sln.minMalwareSpread(graph, initial);Assert(3, res);}{Solution sln;graph ={ {1,0,0,0,0,1,0},{0,1,1,0,0,0,0},{0,1,1,0,0,0,0},{0,0,0,1,0,0,0},{0,0,0,0,1,0,0},{1,0,0,0,0,1,0},{0,0,0,0,0,0,1} }, initial = { 4 };auto res = sln.minMalwareSpread(graph, initial);Assert(4, res);}
}

扩展阅读

视频课程

有效学习:明确的目标 及时的反馈 拉伸区(难度合适),可以先学简单的课程,请移步CSDN学院,听白银讲师(也就是鄙人)的讲解。
https://edu.csdn.net/course/detail/38771

如何你想快速形成战斗了,为老板分忧,请学习C#入职培训、C++入职培训等课程
https://edu.csdn.net/lecturer/6176

相关下载

想高屋建瓴的学习算法,请下载《喜缺全书算法册》doc版
https://download.csdn.net/download/he_zhidan/88348653

我想对大家说的话
闻缺陷则喜是一个美好的愿望,早发现问题,早修改问题,给老板节约钱。
子墨子言之:事无终始,无务多业。也就是我们常说的专业的人做专业的事。
如果程序是一条龙,那算法就是他的是睛

测试环境

操作系统:win7 开发环境: VS2019 C++17
或者 操作系统:win10 开发环境: VS2022 C++17
如无特殊说明,本算法用**C++**实现。

这篇关于【图论】【并集查找】【C++算法】928. 尽量减少恶意软件的传播 II的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/765500

相关文章

C++右移运算符的一个小坑及解决

《C++右移运算符的一个小坑及解决》文章指出右移运算符处理负数时左侧补1导致死循环,与除法行为不同,强调需注意补码机制以正确统计二进制1的个数... 目录我遇到了这么一个www.chinasem.cn函数由此可以看到也很好理解总结我遇到了这么一个函数template<typename T>unsigned

C++统计函数执行时间的最佳实践

《C++统计函数执行时间的最佳实践》在软件开发过程中,性能分析是优化程序的重要环节,了解函数的执行时间分布对于识别性能瓶颈至关重要,本文将分享一个C++函数执行时间统计工具,希望对大家有所帮助... 目录前言工具特性核心设计1. 数据结构设计2. 单例模式管理器3. RAII自动计时使用方法基本用法高级用法

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C#高效实现Word文档内容查找与替换的6种方法

《C#高效实现Word文档内容查找与替换的6种方法》在日常文档处理工作中,尤其是面对大型Word文档时,手动查找、替换文本往往既耗时又容易出错,本文整理了C#查找与替换Word内容的6种方法,大家可以... 目录环境准备方法一:查找文本并替换为新文本方法二:使用正则表达式查找并替换文本方法三:将文本替换为图

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

Python中高级文本模式匹配与查找技术指南

《Python中高级文本模式匹配与查找技术指南》文本处理是编程世界的永恒主题,而模式匹配则是文本处理的基石,本文将深度剖析PythonCookbook中的核心匹配技术,并结合实际工程案例展示其应用,希... 目录引言一、基础工具:字符串方法与序列匹配二、正则表达式:模式匹配的瑞士军刀2.1 re模块核心AP

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3