向量数据库PGVECTOR,AI浪潮下崛起的新秀!

2024-02-29 12:12

本文主要是介绍向量数据库PGVECTOR,AI浪潮下崛起的新秀!,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

📢📢📢📣📣📣
哈喽!大家好,我是【IT邦德】,江湖人称jeames007,10余年DBA及大数据工作经验
一位上进心十足的【大数据领域博主】!😜😜😜
中国DBA联盟(ACDU)成员,目前服务于工业互联网
擅长主流Oracle、MySQL、PG、高斯及Greenplum运维开发,备份恢复,安装迁移,性能优化、故障应急处理等。
✨ 如果有对【数据库】感兴趣的【小可爱】,欢迎关注【IT邦德】💞💞💞
❤️❤️❤️感谢各位大可爱小可爱!❤️❤️❤️

文章目录

    • 📣 1.序言
    • 📣 2.向量数据库
    • 📣 3.向量插件PGVECTOR
    • 📣 4.PGVECTOR安装
    • 📣 5.PGVECTOR实践
      • ✨ 5.1 知识检索
      • ✨ 5.2 距离定位
    • 📣 6.优势和不足
    • 📣 7.总结


向量数据库因为可以为大模型提供记忆而需求倍增,随着AI的热潮开始崭露头角,本文也聚焦于被 AI 炒火了的向量数据库,介绍什么是向量数据库,以及以插件形式存在的 pgvector,与PostgreSQL 强强联合,成为AI浪潮下的崛起新星。

📣 1.序言

自从OpenAI推出了全新的对话式通用人工智能工具——ChatGPT,ChatGPT 表现出了非常惊艳的语言理解、生成、知识推理能力,ChatGPT 的横空出世拉开了大语言模型产业和生成式AI产业蓬勃发展的序幕,大模型作为新一代的AI处理器,提供了数据处理能力;而向量数据库提供了存储能力,成为大模型时代的重要基座。

在这里插入图片描述

📣 2.向量数据库

数据库有事务处理(OLTP)与数据分析(OLAP)两大核心场景,向量数据库自然也不例外。典型的事务处理场景包括:知识库,问答,推荐系统,人脸识别,图片搜索,等等等等。知识问答:给出一个自然语言描述的问题,返回与这些输入最为接近的结果;以图搜图:给定一张图片,找出与这张图片在逻辑上最接近的其他相关图片。
这些功能说到底都是一个共同的数学问题:向量最近邻检索(KNN):给定一个向量,找到距离此向量最近的其他向量。

向量数据库的主要应用场景:
1.人脸识别
向量数据库可以存储大量的人脸向量数据,
并通过向量索引技术实现快速的人脸识别和比对。
2.图像搜索
向量数据库可以存储大量的图像向量数据,
并通过向量索引技术实现快速的图像搜索和相似度匹配。
3.音频识别
向量数据库可以存储大量的音频向量数据,
并通过向量索引技术实现快速的音频识别和匹配。
4.自然语言处理
向量数据库可以存储大量的文本向量数据,
并通过向量索引技术实现快速的文本搜索和相似度匹配。
5.推荐系统
向量数据库可以存储大量的用户向量和物品向量数据,
并通过向量索引技术实现快速的推荐和相似度匹配。
6.数据挖掘
向量数据库可以存储大量的向量数据,
并通过向量索引技术实现快速的数据挖掘和分析。

在这里插入图片描述

📣 3.向量插件PGVECTOR

在所有现有向量数据库中,pgvector是一个独特的存在 —— 它选择了在现有的世界上最强大的开源关系型数据库 PostgreSQL 上以插件的形式添砖加瓦,而不是另起炉灶做成另一个专用的“数据库” pgvector有着优雅简单易用的接口,不俗的性能表现,更是继承了PG生态的超能力集合。

在这里插入图片描述

pgvector 是一个基于 PostgreSQL 的扩展,为用户提供了一套强大的功能,用于高效地存储、查询和处理向量数据。它具有以下特点:

直接集成:pgvector 可以作为扩展直接添加到现有的 PostgreSQL 环境中,方便新用户和长期用户获得矢量数据库的好处,无需进行重大系统更改。
支持多种距离度量:pgvector 内置支持多种距离度量,包括欧几里德距离、余弦距离和曼哈顿距离。这样的多功能性使得可以根据具体应用需求进行高度定制的基于相似性的搜索和分析。

索引支持:pgvector 扩展为矢量数据提供高效的索引选项,例如 k-最近邻 (k-NN) 搜索。即使数据集大小增长,用户也可以实现快速查询执行,并保持较高的搜索准确性。
易于查询语言访问:作为 PostgreSQL 的扩展,pgvector 使用熟悉的 SQL 查询语法进行向量操作。这简化了具有 SQL 知识和经验的用户使用矢量数据库的过程,并避免了学习新的语言或系统。

积极的开发和支持:pgvector 经常更新,以确保与最新的 PostgreSQL 版本和功能兼容,并且开发者社区致力于增强其功能。用户可以期待一个受到良好支持的解决方案,满足其矢量数据的需求。

稳健性和安全性:通过与 PostgreSQL 的集成,pgvector 继承了相同级别的稳健性和安全性功能,使用户能够安全地存储和管理其矢量数据。

📣 4.PGVECTOR安装

1.配置yum源
yum install -y https://download.postgresql.org/pub/repos/yum/reporpms/EL-8-x86_64/pgdg-redhat-repo-latest.noarch.rpm2.编译安装
# 先安装git(如果已安装,跳过)
yum install -y git# 切换到/tmp目录,下载源码包,我这里选择是目前最新版本0.5.1
cd /tmp
git clone --branch v0.6.0 https://github.com/pgvector/pgvector.git# 进入/tmp/pgvector目录,进行编译安装
cd pgvector
make & make install3.安装vector扩展
# 创建demo数据库
create database demo;# 切换到demo数据库
\c demo# 安装vector扩展
CREATE EXTENSION vector;# 创建测试表
CREATE TABLE test (id bigserial PRIMARY KEY, embedding vector(3));# 插入测试数据
INSERT INTO test (embedding) VALUES ('[1,2,3]'), ('[4,5,6]');# 按与给定向量相似度(L2 distance)排序,显示前5条
SELECT * FROM test ORDER BY embedding <-> '[3,1,2]' LIMIT 5;

📣 5.PGVECTOR实践

✨ 5.1 知识检索

用一个简易的 Python 小脚本,
就可以制作一个全文模糊检索的命令行小工具# !/usr/bin/env python3
from text2vec import SentenceModel
from psycopg2 import connect
model = SentenceModel('shibing624/text2vec-base-chinese')def query(question, limit=64):vec = model.encode(question)  # 生成一个一次性的编码向量,默认查找最接近的64条记录item = 'ARRAY[' + ','.join([str(f) for f in vec.tolist()]) + ']::VECTOR(768)'cursor = connect('postgres:///').cursor()cursor.execute("""SELECT id, txt, vec <-> %s AS d FROM sentences ORDER BY 3 LIMIT %s;""" % (item, limit))for id, txt, distance in cursor.fetchall():print("%-6d [%.3f]\t%s" % (id, distance, txt))

✨ 5.2 距离定位

在这里插入图片描述

📣 6.优势和不足

优点:
高效查询:向量数据库使用特殊的数据结构和索引方法来优化查询效率,可以快速地查询和计算相似度,支持高效的数据查询。
支持高维度向量:向量数据库可以支持高维度的向量数据,可以存储和查询大规模的向量数据。
支持复杂查询:向量数据库可以支持复杂的查询操作,如范围查询、布尔查询、聚合查询等,可以满足不同类型的查询需求。
支持高并发:向量数据库通常采用多线程或分布式架构来支持高并发的查询请求,可以满足大规模数据查询的需求。
可扩展性强:向量数据库可以根据需要进行扩展,可以扩展到多台服务器上,可以支持大规模的向量数据存储和查询。
应用场景广泛:向量数据库在机器学习、图像识别、自然语言处理等领域得到广泛应用,可以满足各种不同的应用场景需求。

缺点:
存储成本高:向量数据通常需要较大的存储空间,因此存储成本相对较高。
查询效率受向量维度影响:向量维度越高,查询效率越低。
数据更新困难:向量数据的更新操作相对复杂,需要重新计算相似度等数据。
适用场景有限:向量数据库适用于存储和查询大规模的向量数据,对于其他类型的数据则不太适用。
技术门槛较高:向量数据库的技术门槛较高,需要具备一定的数学和计算机技术知识。

📣 7.总结

向量数据库是一个非常有前景和潜力的行业,相信未来随着AI技术的不断发展,向量数据库也必将迎来更加广阔的发展空间。

这篇关于向量数据库PGVECTOR,AI浪潮下崛起的新秀!的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/758734

相关文章

PostgreSQL数据库密码被遗忘时的操作步骤

《PostgreSQL数据库密码被遗忘时的操作步骤》密码遗忘是常见的用户问题,因此提供一种安全的遗忘密码找回机制是十分必要的,:本文主要介绍PostgreSQL数据库密码被遗忘时的操作步骤的相关资... 目录前言一、背景知识二、Windows环境下的解决步骤1. 找到PostgreSQL安装目录2. 修改p

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

Druid连接池实现自定义数据库密码加解密功能

《Druid连接池实现自定义数据库密码加解密功能》在现代应用开发中,数据安全是至关重要的,本文将介绍如何在​​Druid​​连接池中实现自定义的数据库密码加解密功能,有需要的小伙伴可以参考一下... 目录1. 环境准备2. 密码加密算法的选择3. 自定义 ​​DruidDataSource​​ 的密码解密3

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事

在Java中基于Geotools对PostGIS数据库的空间查询实践教程

《在Java中基于Geotools对PostGIS数据库的空间查询实践教程》本文将深入探讨这一实践,从连接配置到复杂空间查询操作,包括点查询、区域范围查询以及空间关系判断等,全方位展示如何在Java环... 目录前言一、相关技术背景介绍1、评价对象AOI2、数据处理流程二、对AOI空间范围查询实践1、空间查

Python+PyQt5实现MySQL数据库备份神器

《Python+PyQt5实现MySQL数据库备份神器》在数据库管理工作中,定期备份是确保数据安全的重要措施,本文将介绍如何使用Python+PyQt5开发一个高颜值,多功能的MySQL数据库备份工具... 目录概述功能特性核心功能矩阵特色功能界面展示主界面设计动态效果演示使用教程环境准备操作流程代码深度解

MySQL数据库实现批量表分区完整示例

《MySQL数据库实现批量表分区完整示例》通俗地讲表分区是将一大表,根据条件分割成若干个小表,:本文主要介绍MySQL数据库实现批量表分区的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考... 目录一、表分区条件二、常规表和分区表的区别三、表分区的创建四、将既有表转换分区表脚本五、批量转换表为分区

Spring AI 实现 STDIO和SSE MCP Server的过程详解

《SpringAI实现STDIO和SSEMCPServer的过程详解》STDIO方式是基于进程间通信,MCPClient和MCPServer运行在同一主机,主要用于本地集成、命令行工具等场景... 目录Spring AI 实现 STDIO和SSE MCP Server1.新建Spring Boot项目2.a

MySQL Workbench工具导出导入数据库方式

《MySQLWorkbench工具导出导入数据库方式》:本文主要介绍MySQLWorkbench工具导出导入数据库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝... 目录mysql Workbench工具导出导入数据库第一步 www.chinasem.cn数据库导出第二步