【大数据】Flink SQL 语法篇(八):集合、Order By、Limit、TopN

2024-02-29 08:20

本文主要是介绍【大数据】Flink SQL 语法篇(八):集合、Order By、Limit、TopN,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Flink SQL 语法篇(八):集合、Order By、Limit、TopN

  • 1.集合操作
  • 2.Order By、Limit 子句
    • 2.1 Order By 子句
    • 2.2 Limit 子句
  • 3.TopN 子句

1.集合操作

集合操作支持 Batch / Streaming 任务。

在这里插入图片描述

  • UNION:将集合合并并且去重。
  • UNION ALL:将集合合并,不做去重。
Flink SQL> create view t1(s) as values ('c'), ('a'), ('b'), ('b'), ('c');
Flink SQL> create view t2(s) as values ('d'), ('e'), ('a'), ('b'), ('b');Flink SQL> (SELECT s FROM t1) UNION (SELECT s FROM t2);
+---+
|  s|
+---+
|  c|
|  a|
|  b|
|  d|
|  e|
+---+Flink SQL> (SELECT s FROM t1) UNION ALL (SELECT s FROM t2);
+---+
|  c|
+---+
|  c|
|  a|
|  b|
|  b|
|  c|
|  d|
|  e|
|  a|
|  b|
|  b|
+---+
  • Intersect:交集并且去重。
  • Intersect ALL:交集不做去重。
Flink SQL> create view t1(s) as values ('c'), ('a'), ('b'), ('b'), ('c');
Flink SQL> create view t2(s) as values ('d'), ('e'), ('a'), ('b'), ('b');
Flink SQL> (SELECT s FROM t1) INTERSECT (SELECT s FROM t2);
+---+
|  s|
+---+
|  a|
|  b|
+---+Flink SQL> (SELECT s FROM t1) INTERSECT ALL (SELECT s FROM t2);
+---+
|  s|
+---+
|  a|
|  b|
|  b|
+---+
  • Except:差集并且去重。
  • Except ALL:差集不做去重。
Flink SQL> (SELECT s FROM t1) EXCEPT (SELECT s FROM t2);
+---+
| s |
+---+
| c |
+---+Flink SQL> (SELECT s FROM t1) EXCEPT ALL (SELECT s FROM t2);
+---+
| s |
+---+
| c |
| c |
+---+

上述 SQL 在流式任务中,如果一条左流数据先来了,没有从右流集合数据中找到对应的数据时会直接输出,当右流对应数据后续来了之后,会下发回撤流将之前的数据给撤回。这也是一个回撤流。

  • In 子查询:这个大家比较熟悉了,但是注意,In 子查询的结果集只能有一列。
SELECT user, amount
FROM Orders
WHERE product IN (SELECT product FROM NewProducts
)

上述 SQL 的 In 子句其实就和之前介绍到的 Inner Join 类似。并且 In 子查询也会涉及到大状态问题,大家注意设置 State 的 TTL。

2.Order By、Limit 子句

2.1 Order By 子句

支持 Batch / Streaming,但在实时任务中一般用的非常少。

实时任务中,Order By 子句中 必须要有时间属性字段,并且时间属性必须为 升序 时间属性,即 WATERMARK FOR rowtime_column AS rowtime_column - INTERVAL '0.001' SECOND 或者 WATERMARK FOR rowtime_column AS rowtime_column

举例:

CREATE TABLE source_table_1 (user_id BIGINT NOT NULL,row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),WATERMARK FOR row_time AS row_time
) WITH ('connector' = 'datagen','rows-per-second' = '10','fields.user_id.min' = '1','fields.user_id.max' = '10'
);CREATE TABLE sink_table (user_id BIGINT
) WITH ('connector' = 'print'
);INSERT INTO sink_table
SELECT user_id
FROM source_table_1
Order By row_time, user_id desc

2.2 Limit 子句

支持 Batch / Streaming,但实时场景一般不使用,但是此处依然举一个例子。

CREATE TABLE source_table_1 (user_id BIGINT NOT NULL,row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),WATERMARK FOR row_time AS row_time
) WITH ('connector' = 'datagen','rows-per-second' = '10','fields.user_id.min' = '1','fields.user_id.max' = '10'
);CREATE TABLE sink_table (user_id BIGINT
) WITH ('connector' = 'print'
);INSERT INTO sink_table
SELECT user_id
FROM source_table_1
Limit 3

结果如下,只有 3 条输出:

+I[5]
+I[9]
+I[4]

3.TopN 子句

TopN 定义(支持 Batch / Streaming):TopN 其实就是对应到离线数仓中的 row_number(),可以使用 row_number() 对某一个分组的数据进行排序。

应用场景:根据 某个排序 条件,计算 某个分组 下的排行榜数据。

SQL 语法标准:

SELECT [column_list]
FROM (SELECT [column_list],ROW_NUMBER() OVER ([PARTITION BY col1[, col2...]]ORDER BY col1 [asc|desc][, col2 [asc|desc]...]) AS rownumFROM table_name)
WHERE rownum <= N [AND conditions]
  • ROW_NUMBER():标识 TopN 排序子句。
  • PARTITION BY col1[, col2...]:标识分区字段,代表按照这个 col 字段作为分区粒度对数据进行排序取 TopN,比如下述案例中的 partition by key,就是根据需求中的搜索关键词(key)做为分区。
  • ORDER BY col1 [asc|desc][, col2 [asc|desc]...]:标识 TopN 的排序规则,是按照哪些字段、顺序或逆序进行排序。
  • WHERE rownum <= N:这个子句是一定需要的,只有加上了这个子句,Flink 才能将其识别为一个 TopN 的查询,其中 N 代表 TopN 的条目数。
  • [AND conditions]:其他的限制条件也可以加上。

实际案例:取某个搜索关键词下的搜索热度前 10 名的词条数据。

输入数据为搜索词条数据的搜索热度数据,当搜索热度发生变化时,会将变化后的数据写入到数据源的 Kafka 中:

-- 数据源 schema-- 字段名         备注
-- key          搜索关键词
-- name         搜索热度名称
-- search_cnt    热搜消费热度(比如 3000)
-- timestamp       消费词条时间戳CREATE TABLE source_table (name BIGINT NOT NULL,search_cnt BIGINT NOT NULL,key BIGINT NOT NULL,row_time AS cast(CURRENT_TIMESTAMP as timestamp(3)),WATERMARK FOR row_time AS row_time
) WITH (...
);-- 数据汇 schema-- key          搜索关键词
-- name         搜索热度名称
-- search_cnt    热搜消费热度(比如 3000)
-- timestamp       消费词条时间戳CREATE TABLE sink_table (key BIGINT,name BIGINT,search_cnt BIGINT,`timestamp` TIMESTAMP(3)
) WITH (...
);-- DML 逻辑
INSERT INTO sink_table
SELECT key, name, search_cnt, row_time as `timestamp`
FROM (SELECT key, name, search_cnt, row_time, -- 根据热搜关键词 key 作为 partition key,然后按照 search_cnt 倒排取前 100 名ROW_NUMBER() OVER (PARTITION BY keyORDER BY search_cnt desc) AS rownumFROM source_table)
WHERE rownum <= 100

输出结果:

-D[关键词1, 词条1, 4944]
+I[关键词1, 词条1, 8670]
+I[关键词1, 词条2, 1735]
-D[关键词1, 词条3, 6641]
+I[关键词1, 词条3, 6928]
-D[关键词1, 词条4, 6312]
+I[关键词1, 词条4, 7287]

可以看到输出数据是有回撤数据的,为什么会出现回撤,我们来看看 SQL 语义。

上面的 SQL 会翻译成以下三个算子:

  • 数据源:数据源即最新的词条下面的搜索词的搜索热度数据,消费到 Kafka 中数据后,按照 partition key 将数据进行 Hash 分发到下游排序算子,相同的 Key 数据将会发送到一个并发中。
  • 排序算子:为每个 Key 维护了一个 TopN 的榜单数据,接受到上游的一条数据后,如果 TopN 榜单还没有到达 N 条,则将这条数据加入 TopN 榜单后,直接下发数据,如果到达 N 条之后,经过 TopN 计算,发现这条数据比原有的数据排序靠前,那么新的 TopN 排名就会有变化,就变化了的这部分数据之前下发的排名数据撤回(即回撤数据),然后下发新的排名数据。
  • 数据汇:接收到上游的数据之后,然后输出到外部存储引擎中。

上面三个算子也是会 24 小时一直运行的。

这篇关于【大数据】Flink SQL 语法篇(八):集合、Order By、Limit、TopN的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/758133

相关文章

批量导入txt数据到的redis过程

《批量导入txt数据到的redis过程》用户通过将Redis命令逐行写入txt文件,利用管道模式运行客户端,成功执行批量删除以Product*匹配的Key操作,提高了数据清理效率... 目录批量导入txt数据到Redisjs把redis命令按一条 一行写到txt中管道命令运行redis客户端成功了批量删除k

MySQL中EXISTS与IN用法使用与对比分析

《MySQL中EXISTS与IN用法使用与对比分析》在MySQL中,EXISTS和IN都用于子查询中根据另一个查询的结果来过滤主查询的记录,本文将基于工作原理、效率和应用场景进行全面对比... 目录一、基本用法详解1. IN 运算符2. EXISTS 运算符二、EXISTS 与 IN 的选择策略三、性能对比

MySQL常用字符串函数示例和场景介绍

《MySQL常用字符串函数示例和场景介绍》MySQL提供了丰富的字符串函数帮助我们高效地对字符串进行处理、转换和分析,本文我将全面且深入地介绍MySQL常用的字符串函数,并结合具体示例和场景,帮你熟练... 目录一、字符串函数概述1.1 字符串函数的作用1.2 字符串函数分类二、字符串长度与统计函数2.1

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

MySQL 内存使用率常用分析语句

《MySQL内存使用率常用分析语句》用户整理了MySQL内存占用过高的分析方法,涵盖操作系统层确认及数据库层bufferpool、内存模块差值、线程状态、performance_schema性能数据... 目录一、 OS层二、 DB层1. 全局情况2. 内存占js用详情最近连续遇到mysql内存占用过高导致

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Mysql中设计数据表的过程解析

《Mysql中设计数据表的过程解析》数据库约束通过NOTNULL、UNIQUE、DEFAULT、主键和外键等规则保障数据完整性,自动校验数据,减少人工错误,提升数据一致性和业务逻辑严谨性,本文介绍My... 目录1.引言2.NOT NULL——制定某列不可以存储NULL值2.UNIQUE——保证某一列的每一

解密SQL查询语句执行的过程

《解密SQL查询语句执行的过程》文章讲解了SQL语句的执行流程,涵盖解析、优化、执行三个核心阶段,并介绍执行计划查看方法EXPLAIN,同时提出性能优化技巧如合理使用索引、避免SELECT*、JOIN... 目录1. SQL语句的基本结构2. SQL语句的执行过程3. SQL语句的执行计划4. 常见的性能优

SQL Server 中的 WITH (NOLOCK) 示例详解

《SQLServer中的WITH(NOLOCK)示例详解》SQLServer中的WITH(NOLOCK)是一种表提示,等同于READUNCOMMITTED隔离级别,允许查询在不获取共享锁的情... 目录SQL Server 中的 WITH (NOLOCK) 详解一、WITH (NOLOCK) 的本质二、工作