数据结构之红黑树(二)——插入操作

2024-02-28 14:58

本文主要是介绍数据结构之红黑树(二)——插入操作,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

插入或删除操作,都有可能改变红黑树的平衡性,利用颜色变化与旋转这两大法宝就可应对所有情况,将不平衡的红黑树变为平衡的红黑树。

在进行颜色变化或旋转的时候,往往要涉及祖孙三代节点:X表示操作的基准节点,P代表X的父节点,G代表X的父节点的父节点。

我们先来大体预览一下插入的过程:

1、沿着树查找插入点,如果查找过程中发现某个黑色节点的两个子节点都是红色,则执行一次颜色变换(父节点变为红色,而两个红色子节点变为黑色)。

2、第1步中,不会改变子树的黑色高度,但是可能会出现颜色冲突(红-红颜色冲突),执行一次或两次旋转即可解决。设红色子节点为X,红色父节点为P,旋转次数由X是G的内侧子孙还是外侧子孙决定。

3、找到插入点之后,设X为新插入的节点。如果P是黑色的,则不需要做任何改变,插入完成。

4、如果P是红色的,则发生了红-红颜色冲突,需要做两次颜色变化,如果X为G的外侧子孙,再进行一次旋转;如果X为G的内侧子孙,再进行两次旋转。最终都可使树变为平衡的红黑树。

现在看不懂没关系,为何要这么做,我们接下来慢慢分析。

 

第1步与第2步看似与插入新节点没关系,其实为了给新节点的插入扫清道路,到后面插入新节点时就会体现出来。

先来看第1步的详细过程:


上图中,查找到P点,发现它的两个子节点都是红色,则进行颜色变换(如果P是根,则保持黑色不变)。这种变换并不会改变从根节点经P到叶节点或者空节点的路径上的黑色节点总数,即不会改变其黑色高度。将P、X1、X2看做三角形的三个顶点,颜色变换之前,经过此三角形时会增加一个黑色节点,颜色变换之后,P变成了红色,X1、X2变成了黑色,不论是经过X1还是经过X2,还是会增加一个黑色节点。

如果P的父节点是黑色,则不会出现任何问题,但是,如果P的父节点也是红色,就会发生红-红颜色冲突,需要通过旋转来修正。发生颜色冲突时有两种情况需要区别对待。

注意,这时候我们选定红-红颜色冲突父子节点中的子节点作为基准节点,即X。如果X在P的一侧与P在G的一侧相同,X即为G的外侧子孙,反之,则为内侧子孙

情况1:X为外侧子孙节点。


上图中,表示的是颜色变换之后的情况,12跟25节点发生了颜色冲突,12为50的外侧子孙。

在这种情况需要采取三步操作:

1、改变G的颜色;

2、改变P的颜色

3、以G为中心进行向X上升的方向旋转(本例中是右旋)。


奇迹发生了,树突然之间平衡了,而且是符合红黑规则的。

需要注意的是,在本例中,由于25是50的左子节点,进行的是右旋操作,加入它是右子节点,则需要进行左旋操作。无论是左旋还是右旋,都是向着X上升的方向旋转

 

情况2:X为内侧子孙节点。

修正这种情况比较复杂一点,如果我们采取跟内侧子孙一样的做法,X不会上移而是发生横向移动,使树变得更加不平衡。因此需要一种不同的方法来解决。

我们先要用一次旋转让X成为外侧子孙,然后再用一次旋转使树平衡。

这种情况需要进行四步操作:

1、改变G的颜色;

2、改变X的颜色;

3、以P为中心向X上升的方向旋转;

4、以G为中心向X上升的方向旋转。

 

 

至此,前期工作已经完成,下面进行新节点的插入。在插入环节,我们以新节点为基准点,即X。

在前面已经说过,我们总是默认新节点为红色。那么,找到插入点的时候,会有两种情况,一种是X的父节点为P为黑色,直接插入即可(因为插入一个红色新节点既不会影响树的黑色高度,也不会发生颜色冲突);另一种情况是X的父节点P也为红色,插入后会发生红-红颜色冲突,需要通过颜色变换与旋转来修正。

发生颜色冲突的时候,根据X是内侧子孙还是外侧子孙分别对待,处理方法与上面提到的方法类似。

外侧子孙:

 

内侧子孙:

 

下面我们来讨论一下,是否还有其他情况。

假如X有一个兄弟节点S,即P的另一个子节点,会使任何需要的旋转更加复杂。如果P为黑色,无论X有没有兄弟节点,都不需要旋转;如果P为红色,则插入之前,P不可能有一个单独的黑色子节点,因为这样会使S和空子节点的黑色高度不一样。综上,插入新节点之后,不会出现X存在兄弟节点而且需要旋转修正的情况。

假如P有一个兄弟节点,即X的叔节点U,也会使任何需要的旋转更加复杂。如果P为黑色,X插入后不要要做任何旋转;如果P为红色,则U必须为红色,否则,G到P的黑色高度与G到U的黑色高度就不同了。但是,有两个红色子节点的父节点在插入之前我们已经处理掉了,所以这种情况也不会存在。综上,插入新节点之后,不会出现P存在兄弟节点且需要旋转修正的情况。

到现在,就明白为什么要在寻找插入点的过程中,把有两个红色子节点的父节点的颜色变换掉,一方面是为了使树更加平衡,另一方面是大大简化了插入后的旋转操作。

这篇关于数据结构之红黑树(二)——插入操作的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/755823

相关文章

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

Linux链表操作方式

《Linux链表操作方式》:本文主要介绍Linux链表操作方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、链表基础概念与内核链表优势二、内核链表结构与宏解析三、内核链表的优点四、用户态链表示例五、双向循环链表在内核中的实现优势六、典型应用场景七、调试技巧与

Java Multimap实现类与操作的具体示例

《JavaMultimap实现类与操作的具体示例》Multimap出现在Google的Guava库中,它为Java提供了更加灵活的集合操作,:本文主要介绍JavaMultimap实现类与操作的... 目录一、Multimap 概述Multimap 主要特点:二、Multimap 实现类1. ListMult

Python中文件读取操作漏洞深度解析与防护指南

《Python中文件读取操作漏洞深度解析与防护指南》在Web应用开发中,文件操作是最基础也最危险的功能之一,这篇文章将全面剖析Python环境中常见的文件读取漏洞类型,成因及防护方案,感兴趣的小伙伴可... 目录引言一、静态资源处理中的路径穿越漏洞1.1 典型漏洞场景1.2 os.path.join()的陷

Python中bisect_left 函数实现高效插入与有序列表管理

《Python中bisect_left函数实现高效插入与有序列表管理》Python的bisect_left函数通过二分查找高效定位有序列表插入位置,与bisect_right的区别在于处理重复元素时... 目录一、bisect_left 基本介绍1.1 函数定义1.2 核心功能二、bisect_left 与

Python使用Code2flow将代码转化为流程图的操作教程

《Python使用Code2flow将代码转化为流程图的操作教程》Code2flow是一款开源工具,能够将代码自动转换为流程图,该工具对于代码审查、调试和理解大型代码库非常有用,在这篇博客中,我们将深... 目录引言1nVflRA、为什么选择 Code2flow?2、安装 Code2flow3、基本功能演示

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

解决mysql插入数据锁等待超时报错:Lock wait timeout exceeded;try restarting transaction

《解决mysql插入数据锁等待超时报错:Lockwaittimeoutexceeded;tryrestartingtransaction》:本文主要介绍解决mysql插入数据锁等待超时报... 目录报错信息解决办法1、数据库中执行如下sql2、再到 INNODB_TRX 事务表中查看总结报错信息Lock

python操作redis基础

《python操作redis基础》Redis(RemoteDictionaryServer)是一个开源的、基于内存的键值对(Key-Value)存储系统,它通常用作数据库、缓存和消息代理,这篇文章... 目录1. Redis 简介2. 前提条件3. 安装 python Redis 客户端库4. 连接到 Re

Java Stream.reduce()方法操作实际案例讲解

《JavaStream.reduce()方法操作实际案例讲解》reduce是JavaStreamAPI中的一个核心操作,用于将流中的元素组合起来产生单个结果,:本文主要介绍JavaStream.... 目录一、reduce的基本概念1. 什么是reduce操作2. reduce方法的三种形式二、reduce