Spark GraphX实现Bron–Kerbosch算法-极大团问题

2024-02-28 11:40

本文主要是介绍Spark GraphX实现Bron–Kerbosch算法-极大团问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

首先,说明两个概念:团、极大团。

  • clique)是一个无向图(undirected graph )的子图,该子图中任意两个顶点之间均存在一条边。又叫做完全子图。
  • 极大团(maximal clique)是一个团,该团不能被更大的团所包含,换句话说,再也不存在一个点与该团中的任意顶点之间存在一条边。

研究极大团的问题对社区发现等场景有较高的理论价值和现实意义。求一个无向图中的极大团问题是一个经典的NP完全问题,1973年曾提出了一个Bron-Kerbosch算法用来解决该问题,其伪代码如下:

 BronKerbosch(R, P, X):if P and X are both empty:report R as a maximal cliquefor each vertex v in P:BronKerbosch(R ⋃ {v}, P ⋂ N(v), X ⋂ N(v))P := P \ {v}X := X ⋃ {v}

该算法中有四个集合:R,P,X,N(v),其中:

R:目前已经在团中的顶点的集合

P:可能在团中的顶点的集合

X:不被考虑的顶点的集合

N(v):顶点v的所有直接邻居


以一个6个顶点的图为例:


用Spark GraphX实现Bron Kerbosch算法,搜索该图的极大团,代码如下:

import org.apache.spark.graphx.{Edge, EdgeDirection, Graph, VertexId}
import org.apache.spark.{SparkConf, SparkContext}import scala.collection.mutable
import scala.collection.mutable.Setobject FindMaximalCliques {def main(args: Array[String]): Unit = {val conf = new SparkConf().setAppName("findMaximalCliques").setMaster("local")val sc: SparkContext = new SparkContext(conf)//定义顶点val vertexArray = Array((1L,null),(2L,null),(3L,null),(4L,null),(5L,null),(6L,null))//定义边val edgeArray = Array(Edge(6L, 4L,null),Edge(4L, 3L,null),Edge(4L, 5L,null),Edge(5L, 2L,null),Edge(3L, 2L,null),Edge(5L, 1L,null),Edge(2L, 1L,null))//顶点和边转化为RDDval vertexRDD = sc.parallelize(vertexArray)val edgeRDD  = sc.parallelize(edgeArray)//根据顶点和边创建图val graph= Graph(vertexRDD,edgeRDD)//创建一个Map集合。key是图中的所有顶点;value是一个Set集合,保存了该key的所有邻居顶点val map: Map[VertexId, Set[VertexId]] = graph.collectNeighborIds(EdgeDirection.Either).collect().map(t => {var set: mutable.Set[VertexId] = Set[VertexId]()t._2.foreach(t=>{set+=t})(t._1, set)}).toMap//R集合,初始值为空var R = Set[VertexId]()//P集合,初始值为所有的顶点var P = Set[VertexId]()//将所有的顶点添加到P集合中vertexRDD.collect().foreach(t=>{P+=t._1})//X集合,初始值为空var X = Set[VertexId]()//搜索极大团bronKerboschl(R,P,X,map)}/*** 搜索极大团的方法* @param R 目前已经在团中的顶点的集合* @param P 可能在团中的顶点的集合* @param X 不被考虑的顶点的集合* @param map Map集合,通过顶点获取该顶点的所有邻居顶点集合*/def bronKerboschl(R:Set[VertexId],P:Set[VertexId],X:Set[VertexId],map:Map[VertexId, Set[VertexId]]): Unit ={if(P.toList.length ==0 && X.toList.length ==0){println("find a maximal cilique:"+R)}else {for (v <- P) {var Nv: Set[VertexId] = map.get(v).getbronKerboschl(R+v, P.intersect(Nv), X.intersect(Nv), map)X += vP -= v}}}}

结果为:

find a maximal cilique:Set(1, 5, 2)
find a maximal cilique:Set(5, 4)
find a maximal cilique:Set(2, 3)
find a maximal cilique:Set(6, 4)
find a maximal cilique:Set(3, 4)


这篇关于Spark GraphX实现Bron–Kerbosch算法-极大团问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/755401

相关文章

Redis客户端连接机制的实现方案

《Redis客户端连接机制的实现方案》本文主要介绍了Redis客户端连接机制的实现方案,包括事件驱动模型、非阻塞I/O处理、连接池应用及配置优化,具有一定的参考价值,感兴趣的可以了解一下... 目录1. Redis连接模型概述2. 连接建立过程详解2.1 连php接初始化流程2.2 关键配置参数3. 最大连

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

解决RocketMQ的幂等性问题

《解决RocketMQ的幂等性问题》重复消费因调用链路长、消息发送超时或消费者故障导致,通过生产者消息查询、Redis缓存及消费者唯一主键可以确保幂等性,避免重复处理,本文主要介绍了解决RocketM... 目录造成重复消费的原因解决方法生产者端消费者端代码实现造成重复消费的原因当系统的调用链路比较长的时

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

深度解析Nginx日志分析与499状态码问题解决

《深度解析Nginx日志分析与499状态码问题解决》在Web服务器运维和性能优化过程中,Nginx日志是排查问题的重要依据,本文将围绕Nginx日志分析、499状态码的成因、排查方法及解决方案展开讨论... 目录前言1. Nginx日志基础1.1 Nginx日志存放位置1.2 Nginx日志格式2. 499

kkFileView启动报错:报错2003端口占用的问题及解决

《kkFileView启动报错:报错2003端口占用的问题及解决》kkFileView启动报错因office组件2003端口未关闭,解决:查杀占用端口的进程,终止Java进程,使用shutdown.s... 目录原因解决总结kkFileViewjavascript启动报错启动office组件失败,请检查of

Python对接支付宝支付之使用AliPay实现的详细操作指南

《Python对接支付宝支付之使用AliPay实现的详细操作指南》支付宝没有提供PythonSDK,但是强大的github就有提供python-alipay-sdk,封装里很多复杂操作,使用这个我们就... 目录一、引言二、准备工作2.1 支付宝开放平台入驻与应用创建2.2 密钥生成与配置2.3 安装ali

Spring Security 单点登录与自动登录机制的实现原理

《SpringSecurity单点登录与自动登录机制的实现原理》本文探讨SpringSecurity实现单点登录(SSO)与自动登录机制,涵盖JWT跨系统认证、RememberMe持久化Token... 目录一、核心概念解析1.1 单点登录(SSO)1.2 自动登录(Remember Me)二、代码分析三、

PyCharm中配置PyQt的实现步骤

《PyCharm中配置PyQt的实现步骤》PyCharm是JetBrains推出的一款强大的PythonIDE,结合PyQt可以进行pythion高效开发桌面GUI应用程序,本文就来介绍一下PyCha... 目录1. 安装China编程PyQt1.PyQt 核心组件2. 基础 PyQt 应用程序结构3. 使用 Q