poj1061 青蛙的约会(扩展欧几里得算法求解同余方程)

本文主要是介绍poj1061 青蛙的约会(扩展欧几里得算法求解同余方程),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

                               青蛙的约会

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4

 

 

题目分析:假设走了t次相遇,则有等式(x+mt)-(y+nt)=pL成立,等价于求解同余方程(n-m)t≡(x-y) (mod L)的最小整数解

(a)对于一般同余方程ax=d mod b,方程有解,则有(a,d)| b ,所以问题第一步判断解的情况

(b)有(n-m)t+pL=x-y,t、p均为未知变量,将问题转化为求解ax+by=d的最小整数x,扩展欧几里得算法:

briefly:扩展欧几里得算法是辗转相除法求gcd的拓展,表现在ax+by=gcd(a,b),函数extended_gcd()不仅能返回gcd(a,b),还能求出gcd的线性系数x,y,具体的操作步骤如下:

 

       ①首先化简 ,得到新的ax+by=d,注意此时(a,b)=1

       ②先求ax+by=1的解x0、y0(解具有唯一性),利用扩展欧几里得算法得到唯一解x0,则ax+by=d的解x=d*x0

       ③通解X=x+b*k(k为整数)

(c)通过(b)实际上可以得到同余方程的通解,但是题目要求最小整数解,利用min=(X%b+b)%b,X取正取负均满足最小,问题得解

代码+部分解释:

#include <iostream>
#include <cstdio>
#include <algorithm>
#include <map>
#include <vector>
#include <cstring>
#include<cmath>
#define maxn 1500
using namespace std;
long long x,y;
long long extended_gcd(long long a,long long b,long long &x,long long &y)//扩展欧几里得算法:求等式ax+by=gcd(a,b)中的x,y;返回d=gcd(a,b)
{if(b==0) {x=1;y=0;return a;} //边界a*1+0*0=gcd(a,0)=a;long long d=extended_gcd(b,a%b,y,x);y-=a/b*x;return d;
}
long long gcd(long long a,long long b)
{return b==0?a:gcd(b,a%b);
}
int main()
{//freopen("input.txt","r",stdin);long long xx,yy,m,n,l;long a,b,d;while(cin>>xx>>yy>>m>>n>>l){a=n-m;b=l;d=xx-yy;  //ax=d(mod b)long long res=gcd(a,b);if(d%res) cout<<"Impossible"<<endl;//根据同余方程理论首先判断方程有没有解,有解的情况下用扩展欧几里得算法else{                                  //扩展欧几里得算法求解 ax+by=da/=res;b/=res;d/=res;               //约去(a,b)extended_gcd(a,b,x,y);x*=d;         //求特解long long ans=(x%b+b)%b;//求非负min(x),且x=x0+b/d*t,分析可得x=(x0%b+b)%bcout<<ans<<endl;}}return 0;
}

 

这篇关于poj1061 青蛙的约会(扩展欧几里得算法求解同余方程)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754688

相关文章

Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析

《Spring组件实例化扩展点之InstantiationAwareBeanPostProcessor使用场景解析》InstantiationAwareBeanPostProcessor是Spring... 目录一、什么是InstantiationAwareBeanPostProcessor?二、核心方法解

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

Java常用注解扩展对比举例详解

《Java常用注解扩展对比举例详解》:本文主要介绍Java常用注解扩展对比的相关资料,提供了丰富的代码示例,并总结了最佳实践建议,帮助开发者更好地理解和应用这些注解,需要的朋友可以参考下... 目录一、@Controller 与 @RestController 对比二、使用 @Data 与 不使用 @Dat

Spring组件初始化扩展点BeanPostProcessor的作用详解

《Spring组件初始化扩展点BeanPostProcessor的作用详解》本文通过实战案例和常见应用场景详细介绍了BeanPostProcessor的使用,并强调了其在Spring扩展中的重要性,感... 目录一、概述二、BeanPostProcessor的作用三、核心方法解析1、postProcessB

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.