2.2.4 hadoop体系之离线计算-mapreduce分布式计算-MapReduce序列化和排序

本文主要是介绍2.2.4 hadoop体系之离线计算-mapreduce分布式计算-MapReduce序列化和排序,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

1.概念

2.需求分析

3.具体代码

3.1 自定义类型和比较器

3.2 Mapper

3.3 Reducer

3.4 Main入口

4.运行并查看结果

4.1 准备工作

4.2 打包jar

4.3 运行jar包,查看结果


1.概念

  • 序列化 (Serialization) 是指把结构化对象转化为字节流
  • 反序列化 (Deserialization) 是序列化的逆过程. 把字节流转为结构化对象. 当要在进程间传递对象或持久化对象的时候, 就需要序列化对象成字节流, 反之当要将接收到或从磁盘读取的字节流转换为对象, 就要进行反序列化
  • Java 的序列化 (Serializable) 是一个重量级序列化框架, 一个对象被序列化后, 会附带很多额外的信息 (各种校验信息, header, 继承体系等), 不便于在网络中高效传输. 所以, Hadoop自己开发了一套序列化机制(Writable), 精简高效. 不用像Java对象类一样传输多层的父子关系, 需要哪个属性就传输哪个属性值, 大大的减少网络传输的开销
  • Writable 是 Hadoop 的序列化格式, Hadoop 定义了这样一个 Writable 接口. 一个类要支持可序列化只需实现这个接口即可
  • 另外 Writable 有一个子接口是 WritableComparable, WritableComparable是既可实现序列化, 也可以对key进行比较, 我们这里可以通过自定义 Key 实现 WritableComparable 来实现我们的排序功能

2.需求分析

3.具体代码

3.1 自定义类型和比较器

package com.ucas.mapreduce_sort;import org.apache.hadoop.io.WritableComparable;import java.io.DataInput;
import java.io.DataOutput;
import java.io.IOException;/*** @author GONG* @version 1.0* @date 2020/10/9 16:55*/
public class PairWritable implements WritableComparable<PairWritable> {// 组合key,第一部分是我们第一列,第二部分是我们第二列private String first;private int second;public PairWritable() {}public PairWritable(String first, int second) {this.set(first, second);}/*** 方便设置字段*/public void set(String first, int second) {this.first = first;this.second = second;}/*** 反序列化*/@Overridepublic void readFields(DataInput input) throws IOException {this.first = input.readUTF();this.second = input.readInt();}/*** 实现序列化*/@Overridepublic void write(DataOutput output) throws IOException {output.writeUTF(first);output.writeInt(second);}/** 重写比较器,实现排序规则*/public int compareTo(PairWritable o) {//每次比较都是调用该方法的对象与传递的参数进行比较,//说白了就是第一行与第二行比较完了之后的结果与第三行比较,//得出来的结果再去与第四行比较,依次类推int comp = this.first.compareTo(o.first);if (comp != 0) {return comp;} else { // 若第一个字段相等,则比较第二个字段return Integer.valueOf(this.second).compareTo(Integer.valueOf(o.getSecond()));}}public int getSecond() {return second;}public void setSecond(int second) {this.second = second;}public String getFirst() {return first;}public void setFirst(String first) {this.first = first;}@Overridepublic String toString() {return "PairWritable{" +"first='" + first + '\'' +", second=" + second +'}';}
}

3.2 Mapper

package com.ucas.mapreduce_sort;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;import java.io.IOException;/*** @author GONG* @version 1.0* @date 2020/10/9 16:53*/
public class SortMapper extends Mapper<LongWritable, Text, PairWritable, IntWritable> {private PairWritable mapOutKey = new PairWritable();private IntWritable mapOutValue = new IntWritable();@Overridepublic void map(LongWritable key, Text value, Context context) throws IOException, InterruptedException {String lineValue = value.toString();String[] strs = lineValue.split("\t");//设置组合key和value ==> <(key,value),value>mapOutKey.set(strs[0], Integer.valueOf(strs[1]));mapOutValue.set(Integer.valueOf(strs[1]));context.write(mapOutKey, mapOutValue);}
}

3.3 Reducer

package com.ucas.mapreduce_sort;import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Reducer;import java.io.IOException;/*** @author GONG* @version 1.0* @date 2020/10/9 16:53*/
public class SortReducer extends Reducer<PairWritable, IntWritable, Text, IntWritable> {private Text outPutKey = new Text();@Overridepublic void reduce(PairWritable key, Iterable<IntWritable> values, Context context) throws IOException, InterruptedException {//迭代输出for (IntWritable value : values) {outPutKey.set(key.getFirst());context.write(outPutKey, value);}}
}

3.4 Main入口

package com.ucas.mapreduce_sort;import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.TextInputFormat;
import org.apache.hadoop.mapreduce.lib.output.TextOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;/*** @author GONG* @version 1.0* @date 2020/10/9 16:55*/
public class JobMain extends Configured implements Tool {@Overridepublic int run(String[] args) throws Exception {Configuration conf = super.getConf();conf.set("mapreduce.framework.name", "local");Job job = Job.getInstance(conf, JobMain.class.getSimpleName());job.setJarByClass(JobMain.class);job.setInputFormatClass(TextInputFormat.class);TextInputFormat.addInputPath(job, new Path("hdfs://192.168.0.101:8020/input/sort"));TextOutputFormat.setOutputPath(job, new Path("hdfs://192.168.0.101:8020/out/sort_out"));job.setMapperClass(SortMapper.class);job.setMapOutputKeyClass(PairWritable.class);job.setMapOutputValueClass(IntWritable.class);job.setReducerClass(SortReducer.class);job.setOutputKeyClass(Text.class);job.setOutputValueClass(IntWritable.class);boolean b = job.waitForCompletion(true);return b ? 0 : 1;}public static void main(String[] args) throws Exception {Configuration entries = new Configuration();int run = ToolRunner.run(entries, new JobMain(), args);System.exit(run);}
}

4.运行并查看结果

4.1 准备工作

创建sort.txt

在hdfs中创建input文件夹,并且把sort.txt放进去

4.2 打包jar

需要先清理一下clean,然后双击打包

4.3 运行jar包,查看结果

将jar上传到 /export/software

运行:hadoop jar day03_mapreduce_wordcount-1.0-SNAPSHOT.jar com.ucas.mapreduce_sort.JobMain

这篇关于2.2.4 hadoop体系之离线计算-mapreduce分布式计算-MapReduce序列化和排序的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754515

相关文章

Java Exception异常类的继承体系详解

《JavaException异常类的继承体系详解》Java中的异常处理机制分为异常(Exception)和错误(Error)两大类,异常分为编译时异常(CheckedException)和运行时异常... 目录1. 异常类的继承体系2. Error错误3. Exception异常3.1 编译时异常: Che

Java序列化之serialVersionUID的用法解读

《Java序列化之serialVersionUID的用法解读》Java序列化之serialVersionUID:本文介绍了Java对象的序列化和反序列化过程,强调了serialVersionUID的作... 目录JavChina编程a序列化之serialVersionUID什么是序列化为什么要序列化serialV

idea-java序列化serialversionUID自动生成方式

《idea-java序列化serialversionUID自动生成方式》Java的Serializable接口用于实现对象的序列化和反序列化,通过将对象转换为字节流来存储或传输,实现Serializa... 目录简介实现序列化serialVersionUID配置使用总结简介Java.io.Seripyth

java反序列化serialVersionUID不一致问题及解决

《java反序列化serialVersionUID不一致问题及解决》文章主要讨论了在Java中序列化和反序列化过程中遇到的问题,特别是当实体类的`serialVersionUID`发生变化或未设置时,... 目录前言一、序列化、反序列化二、解决方法总结前言serialVersionUID变化后,反序列化失

Java Map排序如何按照值按照键排序

《JavaMap排序如何按照值按照键排序》该文章主要介绍Java中三种Map(HashMap、LinkedHashMap、TreeMap)的默认排序行为及实现按键排序和按值排序的方法,每种方法结合实... 目录一、先理清 3 种 Map 的默认排序行为二、按「键」排序的实现方式1. 方式 1:用 TreeM

Python实现精确小数计算的完全指南

《Python实现精确小数计算的完全指南》在金融计算、科学实验和工程领域,浮点数精度问题一直是开发者面临的重大挑战,本文将深入解析Python精确小数计算技术体系,感兴趣的小伙伴可以了解一下... 目录引言:小数精度问题的核心挑战一、浮点数精度问题分析1.1 浮点数精度陷阱1.2 浮点数误差来源二、基础解决

Python文本相似度计算的方法大全

《Python文本相似度计算的方法大全》文本相似度是指两个文本在内容、结构或语义上的相近程度,通常用0到1之间的数值表示,0表示完全不同,1表示完全相同,本文将深入解析多种文本相似度计算方法,帮助您选... 目录前言什么是文本相似度?1. Levenshtein 距离(编辑距离)核心公式实现示例2. Jac

Java整合Protocol Buffers实现高效数据序列化实践

《Java整合ProtocolBuffers实现高效数据序列化实践》ProtocolBuffers是Google开发的一种语言中立、平台中立、可扩展的结构化数据序列化机制,类似于XML但更小、更快... 目录一、Protocol Buffers简介1.1 什么是Protocol Buffers1.2 Pro

Python中经纬度距离计算的实现方式

《Python中经纬度距离计算的实现方式》文章介绍Python中计算经纬度距离的方法及中国加密坐标系转换工具,主要方法包括geopy(Vincenty/Karney)、Haversine、pyproj... 目录一、基本方法1. 使用geopy库(推荐)2. 手动实现 Haversine 公式3. 使用py

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用