python爬取去哪网数据_利用Python爬取全国250m精度的人口数据、房价数据和公交站(线路)等数据(二)...

本文主要是介绍python爬取去哪网数据_利用Python爬取全国250m精度的人口数据、房价数据和公交站(线路)等数据(二)...,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

b03cb2fbe4fcd1e32b845af809495c71.png

1743fe05ba5e287326fa8eefce72550a.png

上一篇文章 利用Python爬取全国250m精度的人口数据、房价数据和公交站(线路)等数据(一) 介绍了如何爬取数据,但是没有介绍如何爬取全国数据,这篇文章具体介绍下。

aa3a819cdaa334bd96dfb7999c4eaa2b.png

dac85f3fd62ae7fd818ba70d481024ac.png
​import requests
import json
import pandas as pd
import time #地图范围 73.063112,2.995764,135.172386,53.802238header = {'Accept': '*/*','Accept-Language': 'en-US,en;q=0.8','Cache-Control': 'max-age=0','origin':'origin: https://editor.geoq.cn','User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.86 Safari/537.36','Connection': 'keep-alive','Referer': '你自己创建的链接'}
def get_data(radius=250,step=0.1,xmin=73.06,xmax=135.17,ymin=2.99,ymax=53.81):xlen=round((xmax-xmin)/step)ylen=round((ymax-ymin)/step)print(xlen)print(ylen)x1=xminx2=xmin+stepy1=yminy2=ymin+stepnum=0for i in range(1,xlen):start_i = time.clock()for j in range(1,ylen):time.sleep(0.001)values={"citycode":"000000","extent":"["+str(x1)+","+str(y1)+","+str(x2)+","+str(y2)+"]","inSR":"4326","outSR":"4326","grid":"square","radius":str(radius),"f":"geojson","condition":'{"pop":[]}'}url='https://editor.geoq.cn/editormobile/proxy.do?type=GeoDataService&handle=filterservice/regionfilter'response = requests.request('POST', url, data=values,headers = header)datas=response.textdictdatas=json.loads(datas)#dumps是将dict转化成str格式,loads是将str转化成dict格式result=dictdatas['result']features=result['features']#time.sleep(0.001)#c1 = pd.DataFrame(features)#c1.to_json('GeoqPop.json')tem=[]for m in range(0,len(features)):geometry=features[m]['geometry']coordinates=geometry['coordinates']properties=features[m]['properties']pop=properties['pop']point=coordinates[0]p0x=point[0][0]p0y=point[0][1]p1x=point[1][0]p1y=point[1][1]p2x=point[2][0]p2y=point[2][1]p3x=point[3][0]p3y=point[3][1]centerx=(p0x+p1x+p2x+p3x)/4centery=(p0y+p1y+p2y+p3y)/4       tem.append([round(centerx,4),round(centery,4),pop])c = pd.DataFrame(tem)c.to_csv('GeoqChinaPop.txt',mode='a',index = False,header=None,encoding='utf-8-sig')x1=xmin+i*stepy1=ymin+j*stepx2=xmin+(i+1)*stepy2=ymin+(j+1)*stepnum+=1print("当前正在爬取网格大小为"+str(radius)+"m精度的人口数据,目前爬取到第"+str(j)+"行第"+str(i)+"列,"+"总共爬取了"+str(100*num/(xlen*ylen))+"%")elapsed_i = (time.clock() - start_i)print("爬取第"+str(i)+"列用时:"+str(elapsed_i))if __name__ =='__main__':start = time.clock()get_data(250,0.1,73.06,135.17,17.50,54.22)end = time.clock()t=end-startprint("程序总共耗时:"+str(t))

可以利用get_data(250,0.1,73.06,135.17,17.50,54.22)这个函数来爬取全国的数据,范围是全国,为了避免漏掉数据,所以extent范围还是主动扩大了一些(这导致一开始可能会爬到很多空数据,消耗时间)按照全国这个范围,0.1度 循环下去,一共621列367行,一行测试出来爬取时间是262秒,如果要爬取全部一共要691天哈哈。

a2ceb43bfc1560177f8a8f64c9022182.png

2e5d2d37718bc20aa772bf4e51f12769.png

看来应该搞一个分布式了,这样太慢了,这里暂时先不管了,以后有时间再说。

还是先搞一个南京的吧,其他城市的我暂时也不需要,按照城市来的话挺快的。爬取第18列用时:6.261595580461972s
程序总共耗时:156.5806489491781s

9fcf4e9182c45342419c263fa5d89c04.png

其实如果想爬其他数据也很简单,只要把参数换一下,然后查看其response数据格式,和人口的一模一样

2be20417955a5bc8547064b50c547930.png
​
# -*- coding: utf-8 -*-
"""
Created on Thu Mar 28 17:11:01 2019@author: 武状元
"""
import requests
import json
import pandas as pd
import time #地图范围 73.063112,2.995764,135.172386,53.802238header = {'Accept': '*/*','Accept-Language': 'en-US,en;q=0.8','Cache-Control': 'max-age=0','origin':'origin: https://editor.geoq.cn','User-Agent': 'Mozilla/5.0 (Windows NT 10.0; Win64; x64) AppleWebKit/537.36 (KHTML, like Gecko) Chrome/73.0.3683.86 Safari/537.36','Connection': 'keep-alive','Referer': '你自己的链接'}
def get_data(radius=250,step=0.1,xmin=73.06,ymin=2.99,xmax=135.17,ymax=53.81):xlen=round((xmax-xmin)/step)ylen=round((ymax-ymin)/step)print(xlen)print(ylen)x1=xminx2=xmin+stepy1=yminy2=ymin+stepnum=0for i in range(1,xlen):start_i = time.clock()for j in range(1,ylen):time.sleep(0.001)values={"citycode":"000000","extent":"["+str(x1)+","+str(y1)+","+str(x2)+","+str(y2)+"]","inSR":"4326","outSR":"4326","grid":"square","radius":str(radius),"f":"geojson","condition":'{"estate_avg_price":[]}'}url='https://editor.geoq.cn/editormobile/proxy.do?type=GeoDataService&handle=filterservice/regionfilter'response = requests.request('POST', url, data=values,headers = header)datas=response.textdictdatas=json.loads(datas)#dumps是将dict转化成str格式,loads是将str转化成dict格式result=dictdatas['result']features=result['features']tem=[]for m in range(0,len(features)):geometry=features[m]['geometry']coordinates=geometry['coordinates']properties=features[m]['properties']estate_avg_price=properties['estate_avg_price']point=coordinates[0]p0x=point[0][0]p0y=point[0][1]p1x=point[1][0]p1y=point[1][1]p2x=point[2][0]p2y=point[2][1]p3x=point[3][0]p3y=point[3][1]centerx=(p0x+p1x+p2x+p3x)/4centery=(p0y+p1y+p2y+p3y)/4       tem.append([round(centerx,4),round(centery,4),estate_avg_price])c = pd.DataFrame(tem)c.to_csv('GeoqPrice_nanjing.txt',mode='a',index = False,header=None,encoding='utf-8-sig')x1=xmin+i*stepy1=ymin+j*stepx2=xmin+(i+1)*stepy2=ymin+(j+1)*stepnum+=1print("当前正在爬取网格大小为"+str(radius)+"m精度的平均房价数据,目前爬取到第"+str(j)+"行第"+str(i)+"列,"+"总共爬取了"+str(100*num/(xlen*ylen))+"%")elapsed_i = (time.clock() - start_i)print("爬取第"+str(i)+"列用时:"+str(elapsed_i))if __name__ =='__main__':start = time.clock()get_data(250,0.1,117.66467283479871,31.03457902411351,119.60650633089246,32.71843925265175)#get_data(250,0.1,73.06,17.50,135.17,54.22)end = time.clock()t=end-startprint("程序总共耗时:"+str(t))

之后测试大概用了178秒,南京250m格网房价数据爬取完毕。

这篇关于python爬取去哪网数据_利用Python爬取全国250m精度的人口数据、房价数据和公交站(线路)等数据(二)...的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/754344

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright