【python量化】多种Transformer模型用于股价预测(Autoformer, FEDformer和PatchTST等)_neuralforecast

本文主要是介绍【python量化】多种Transformer模型用于股价预测(Autoformer, FEDformer和PatchTST等)_neuralforecast,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

bb1fee63b7d3f7f1db42af482660a610.png

写在前面

在本文中,我们利用Nixtla的NeuralForecast框架,实现多种基于Transformer的时序预测模型,包括:Transformer, Informer, Autoformer, FEDformer和PatchTST模型,并且实现将它们应用于股票价格预测的简单例子

1

NeuralForecast

neuralforecast 是一个旨在为时间序列预测提供一个丰富的、高度可用和鲁棒的神经网络模型集合的工具库。这个库集成了从传统的多层感知器(MLP)和递归神经网络(RNN)到最新的模型如N-BEATS、N-HiTS、TFT,以及其他高级架构,以适应多样化的预测需求。它的关键功能包括对静态、历史和未来的外生变量的支持,提高了模型在实际应用中的灵活性。库中的模型提供了良好的预测可解释性,允许用户绘制趋势、季节性以及外生预测组件。neuralforecast 还实现了概率预测,通过简单的适配器支持量化损失和参数分布,增加了预测结果的置信度。此外,它提供了自动模型选择功能,通过并行自动超参数调整来高效确定最优的模型配置。库的简洁接口设计与SKLearn兼容,确保了易用性,并且训练和评估损失的计算能够适应不同的比例,这为不同规模的数据集提供了灵活性。最后,neuralforecast 包含了一个广泛的模型集合,包括但不限于LSTM、RNN、TCN、N-BEATS、N-HiTS、ESRNN以及各种基于Transformer的预测模型等,都是以即插即用的方式实现,方便用户直接应用于各种时间序列预测场景。这些特性使得neuralforecast 成为那些寻求高效、精确且可解释时间序列预测模型的研究人员和实践者的有力工具。本文将利用neuralforecast 实现各种Transformer模型,并展示将它们应用于股票价格预测的简单例子。

2

环境配置

本地环境:

Python 3.8
IDE:Pycharm

库版本:

Pandas version: 2.0.3
Matplotlib version: 3.7.1
Neuralforecast version: 1.6.4

为了使用最新的其他模型,也可以直接fork neuralforecast的源码:

git clone https://github.com/Nixtla/neuralforecast.git
cd neuralforecast
pip install -e .

3

代码实现

步骤 1: 导入所需的库
  • 导入库:首先,导入处理数据所需的 pandas 库,绘图所需的 matplotlib.pyplot 库,以及 neuralforecast 中的多个模块。这些模块包括各种预测模型和评估指标函数。
import pandas as pd
from neuralforecast.models import VanillaTransformer, Informer, Autoformer, FEDformer, PatchTST
from neuralforecast.core import NeuralForecast
import matplotlib.pyplot as plt
from neuralforecast.losses.numpy import mae, rmse, mse
步骤 2: 数据准备
  • 读取数据:使用 pandas从 CSV 文件加载数据。这个数据集包含股票的每日收盘价。

  • 数据预处理:重命名列以符合模型的输入要求(例如,将日期列重命名为 ‘ds’,将收盘价列重命名为 ‘y’)。此外,将日期列转换为日期时间格式,并为数据集添加一个唯一标识符,这对于使用neuralforecast进行时间序列预测是必要的。

df = pd.read_csv('./000001_Daily_Close.csv')
df['unique_id'] = 1
df = df.rename(columns={'date': 'ds', 'Close': 'y'})
df['ds'] = pd.to_datetime(df['ds'])
步骤 3: 定义预测模型
  • 初始化模型:定义一个模型列表,每个模型都是 neuralforecast 库中的一个类的实例。对于每个模型,指定预测范围(horizon)、输入窗口大小(input_size)以及其他训练参数(如 max_steps, val_check_steps)。

  • 模型配置:这些参数决定了模型的训练方式,包括训练持续时间、评估频率和早停机制等。每个模型都有一些公共的参数以及它们自身的参数可以调整,这里均使用它们默认的参数进行模型初始化。

models = [VanillaTransformer(h=horizon,input_size=input_size,max_steps=train_steps,val_check_steps=check_steps,early_stop_patience_steps=3,scaler_type='standard'),Informer(h=horizon,  # Forecasting horizoninput_size=input_size,  # Input sizemax_steps=train_steps,  # Number of training iterationsval_check_steps=check_steps,  # Compute validation loss every 100 stepsearly_stop_patience_steps=3,  # Number of validation iterations before early stoppingscaler_type='standard'),  # Stop training if validation loss does not improveFEDformer(h=horizon,input_size=input_size,max_steps=train_steps,val_check_steps=check_steps,early_stop_patience_steps=3),Autoformer(h=horizon,input_size=input_size,max_steps=train_steps,val_check_steps=check_steps,early_stop_patience_steps=3),PatchTST(h=horizon,input_size=input_size,max_steps=train_steps,val_check_steps=check_steps,early_stop_patience_steps=3),]
步骤 4: 模型训练与交叉验证
  • 创建 NeuralForecast 实例:使用 NeuralForecast 类整合所有的模型。这个类提供了一个统一的接口来训练和评估多个模型。

  • 执行交叉验证:使用 cross_validation 方法对每个模型进行训练和评估。这个方法自动进行时间序列的交叉验证,分割数据集并评估模型在不同时间窗口上的性能。

nf = NeuralForecast(models=models,freq='B')Y_hat_df = nf.cross_validation(df=df,val_size=100,test_size=100,n_windows=None)
步骤 5: 数据筛选
  • 筛选数据点:通过选择特定的“cutoff”点来过滤 Y_hat_df 中的预测。这种筛选基于预测范围 horizon,确保评估是在均匀间隔的时间点上进行。
Y_plot = Y_hat_df
cutoffs = Y_hat_df['cutoff'].unique()[::horizon]
Y_plot = Y_plot[Y_hat_df['cutoff'].isin(cutoffs)]
步骤 6: 绘图与性能评估
  • 绘制预测结果:使用 matplotlib 绘制真实数据与每个模型的预测结果。这有助于直观地比较不同模型的预测准确性。

  • 计算评估指标:对每个模型,计算和打印均方根误差(RMSE)、平均绝对误差(MAE)和均方误差(MSE)等性能指标。这些指标提供了量化模型性能的方式。

plt.figure(figsize=(20, 5))
plt.plot(Y_plot['ds'], Y_plot['y'], label='True')
for model in models:plt.plot(Y_plot['ds'], Y_plot[model], label=model)rmse_value = rmse(Y_hat_df['y'], Y_hat_df[model])mae_value = mae(Y_hat_df['y'], Y_hat_df[model])mse_value = mse(Y_hat_df['y'], Y_hat_df[model])print(f'{model}: rmse {rmse_value:.4f} mae {mae_value:.4f} mse {mse_value:.4f}')plt.xlabel('Datestamp')
plt.ylabel('Close')
plt.grid()
plt.legend()
plt.show()
步骤 7: 结果展示
  • 展示图表:最后,显示绘制的图表。图表展示了不同模型在整个时间序列上的预测表现,允许直观地评估和比较模型。

5d185d6c7ec0781a5971ebf64ad56ad5.png

VanillaTransformer: rmse 56.5187 mae 38.8573 mse 3194.3650
Informer: rmse 52.2324 mae 39.1110 mse 2728.2239
FEDformer: rmse 48.9400 mae 35.9884 mse 2395.1237
Autoformer: rmse 58.5010 mae 45.7157 mse 3422.3614
PatchTST: rmse 48.5870 mae 36.1392 mse 2360.6968

在对比基于 Transformer 的各种模型在股票价格预测任务上的表现时,从可视化以及评估结果中,我们发现 FEDformer 和 PatchTST 在所有评估指标(RMSE、MAE、MSE)上表现最为出色,这可能归因于它们在处理长期依赖关系和捕获时间序列数据中的复杂模式方面的优势。相较之下,虽然 Informer 显示了合理的性能,但其表现略逊于 FEDformer 和 PatchTST。VanillaTransformer 和 Autoformer 的性能相对较差。这些结果强调了根据特定任务的需求选择合适的模型架构的重要性,同时也表明了在实际应用中进行模型选择时需要考虑到模型的特定优势和潜在的局限性。

4

总结

本文展示了如何使用 neuralforecast 实现多种 Transformer 模型(包括 Informer, Autoformer, FEDformer 和 PatchTST),并将它们应用于股票价格预测的简单示例。通过这个演示,我们可以看到 Transformer 模型在处理时间序列数据方面的潜力和灵活性。虽然我们的实验是初步的,但它为进一步的研究和应用提供了一个基础。读者可以在此基础上进行更深入的模型调优、特征工程和超参数实验,以提升预测性能。此外,这些模型的应用不限于股票价格预测,还可以扩展到其他领域的时间序列分析。

这篇关于【python量化】多种Transformer模型用于股价预测(Autoformer, FEDformer和PatchTST等)_neuralforecast的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/752369

相关文章

Python版本信息获取方法详解与实战

《Python版本信息获取方法详解与实战》在Python开发中,获取Python版本号是调试、兼容性检查和版本控制的重要基础操作,本文详细介绍了如何使用sys和platform模块获取Python的主... 目录1. python版本号获取基础2. 使用sys模块获取版本信息2.1 sys模块概述2.1.1

一文详解Python如何开发游戏

《一文详解Python如何开发游戏》Python是一种非常流行的编程语言,也可以用来开发游戏模组,:本文主要介绍Python如何开发游戏的相关资料,文中通过代码介绍的非常详细,需要的朋友可以参考下... 目录一、python简介二、Python 开发 2D 游戏的优劣势优势缺点三、Python 开发 3D

Python函数作用域与闭包举例深度解析

《Python函数作用域与闭包举例深度解析》Python函数的作用域规则和闭包是编程中的关键概念,它们决定了变量的访问和生命周期,:本文主要介绍Python函数作用域与闭包的相关资料,文中通过代码... 目录1. 基础作用域访问示例1:访问全局变量示例2:访问外层函数变量2. 闭包基础示例3:简单闭包示例4

Python实现字典转字符串的五种方法

《Python实现字典转字符串的五种方法》本文介绍了在Python中如何将字典数据结构转换为字符串格式的多种方法,首先可以通过内置的str()函数进行简单转换;其次利用ison.dumps()函数能够... 目录1、使用json模块的dumps方法:2、使用str方法:3、使用循环和字符串拼接:4、使用字符

Python版本与package版本兼容性检查方法总结

《Python版本与package版本兼容性检查方法总结》:本文主要介绍Python版本与package版本兼容性检查方法的相关资料,文中提供四种检查方法,分别是pip查询、conda管理、PyP... 目录引言为什么会出现兼容性问题方法一:用 pip 官方命令查询可用版本方法二:conda 管理包环境方法

基于Python开发Windows自动更新控制工具

《基于Python开发Windows自动更新控制工具》在当今数字化时代,操作系统更新已成为计算机维护的重要组成部分,本文介绍一款基于Python和PyQt5的Windows自动更新控制工具,有需要的可... 目录设计原理与技术实现系统架构概述数学建模工具界面完整代码实现技术深度分析多层级控制理论服务层控制注

pycharm跑python项目易出错的问题总结

《pycharm跑python项目易出错的问题总结》:本文主要介绍pycharm跑python项目易出错问题的相关资料,当你在PyCharm中运行Python程序时遇到报错,可以按照以下步骤进行排... 1. 一定不要在pycharm终端里面创建环境安装别人的项目子模块等,有可能出现的问题就是你不报错都安装

Python打包成exe常用的四种方法小结

《Python打包成exe常用的四种方法小结》本文主要介绍了Python打包成exe常用的四种方法,包括PyInstaller、cx_Freeze、Py2exe、Nuitka,文中通过示例代码介绍的非... 目录一.PyInstaller11.安装:2. PyInstaller常用参数下面是pyinstal

Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题

《Python爬虫HTTPS使用requests,httpx,aiohttp实战中的证书异步等问题》在爬虫工程里,“HTTPS”是绕不开的话题,HTTPS为传输加密提供保护,同时也给爬虫带来证书校验、... 目录一、核心问题与优先级检查(先问三件事)二、基础示例:requests 与证书处理三、高并发选型:

Python中isinstance()函数原理解释及详细用法示例

《Python中isinstance()函数原理解释及详细用法示例》isinstance()是Python内置的一个非常有用的函数,用于检查一个对象是否属于指定的类型或类型元组中的某一个类型,它是Py... 目录python中isinstance()函数原理解释及详细用法指南一、isinstance()函数