百度Apollo规划算法——OBB障碍物检测代码解析

2024-02-26 20:30

本文主要是介绍百度Apollo规划算法——OBB障碍物检测代码解析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

百度Apollo规划算法——Box障碍物检测代码解析

  • 前言
  • 代码
  • 代码分析
    • f1
    • f2
    • f3
    • f4
    • f5
    • f6
  • 参考

前言

本文主要分析Apollo代码中函数bool Box::HasOverlap(const Box2d &box) const {}的数学原理。

在阅读此部分代码时,第一遍没看懂return的一堆什么意思,百度之后说是采用OBB原理,所以就去了解下OBB原理,回来看还是没太明白,直到看到了博客[1],通过博主的图解才有了进一步的了解,但对照代码还是没能完全理解,后来结合向量的相关知识,才算彻底明白了HasOverlap()实现的具体数学原理。
下面,作者仅对代码进行数学解读。

代码

直接上代码,代码路径/self_driving/Optimization/Apollo-DL-IAPS/util/box2d.cc,作者在这里将代码划分为几个部分分别解读。Apollo对Box2d的碰撞检测分为两步进行,第一步使用AABB进行粗检测(f1部分)快速剔除非碰撞的box,第二部分使用OBB进行细检测(f2~f6部分),对f1检测到有碰撞的box进一步进行检测。

bool Box2d::HasOverlap(const Box2d &box) const {// f1if (box.max_x() < min_x() || box.min_x() > max_x() || box.max_y() < min_y() ||box.min_y() > max_y()) {return false;}//f2const double shift_x = box.center_x() - center_.x();const double shift_y = box.center_y() - center_.y();const double dx1 = cos_heading_ * half_length_;const double dy1 = sin_heading_ * half_length_;const double dx2 = sin_heading_ * half_width_;const double dy2 = -cos_heading_ * half_width_;const double dx3 = box.cos_heading() * box.half_length();const double dy3 = box.sin_heading() * box.half_length();const double dx4 = box.sin_heading() * box.half_width();const double dy4 = -box.cos_heading() * box.half_width();//f3return std::abs(shift_x * cos_heading_ + shift_y * sin_heading_) <=std::abs(dx3 * cos_heading_ + dy3 * sin_heading_) +std::abs(dx4 * cos_heading_ + dy4 * sin_heading_) +half_length_ &&//f4std::abs(shift_x * sin_heading_ - shift_y * cos_heading_) <=std::abs(dx3 * sin_heading_ - dy3 * cos_heading_) +std::abs(dx4 * sin_heading_ - dy4 * cos_heading_) +half_width_ &&//f5std::abs(shift_x * box.cos_heading() + shift_y * box.sin_heading()) <=std::abs(dx1 * box.cos_heading() + dy1 * box.sin_heading()) +std::abs(dx2 * box.cos_heading() + dy2 * box.sin_heading()) +box.half_length() &&//f6std::abs(shift_x * box.sin_heading() - shift_y * box.cos_heading()) <=std::abs(dx1 * box.sin_heading() - dy1 * box.cos_heading()) +std::abs(dx2 * box.sin_heading() - dy2 * box.cos_heading()) +box.half_width();
}

代码分析

f1

AABB检测用于粗检测,根据自车和障碍物的box角点构建两个长宽分别平行于坐标轴的box,查看这两个box(两个虚线box表示)是否有交集,可以直接根据新构建的box的角点的坐标值来判断。如下图所示,通过这种方式可以粗略检测到A、B有碰撞,但是是否真的有碰撞还需要通过OBB进一步检测。
AABB

f2

根据OBB检测原理,构建向量如下图所示:
分离轴投影
假设有两个Box类型的对象A和B,计算A.HasOverlap(B)的结果。
以下两行代码计算的时A的中心到B的中心的向量

  const double shift_x = box.center_x() - center_.x();const double shift_y = box.center_y() - center_.y();

转换为数学计算为:
a b ⃗ = ( x s h i f t , y s h i f t ) = ( B . x c e n t e r − A . x c e n t e r , B . y c e n t e r − A . y c e n t e r ) (1) \vec{ab}=(x_{shift},y_{shift})=(B.x_{center}-A.x_{center},B.y_{center}-A.y_{center})\tag{1} ab =(xshift,yshift)=(B.xcenterA.xcenter,B.ycenterA.ycenter)(1)
以下四行代码是分别计算A的纵向方向(指box的朝向)和横向方向的两个向量,其中纵向方向的向量模为 l e n g t h h a l f length_{half} lengthhalf,横向方向的向量模为 w i d t h h a l f width_{half} widthhalf

  const double dx1 = cos_heading_ * half_length_;const double dy1 = sin_heading_ * half_length_;const double dx2 = sin_heading_ * half_width_;const double dy2 = -cos_heading_ * half_width_;

纵向向量:
v 1 ⃗ = ( d x 1 , d y 1 ) = A . l e n g t h h a l f ⋅ ( cos ⁡ ( h e a d i n g A ) , sin ⁡ ( h e a d i n g A ) ) (2) \vec{v_1}=(dx1,dy1)=A.length_{half}\cdot(\cos(heading_A),\sin(heading_A))\tag{2} v1 =(dx1,dy1)=A.lengthhalf(cos(headingA),sin(headingA))(2)
横向向量:
v 2 ⃗ = ( d x 2 , d y 2 ) = A . w i d t h h a l f ⋅ ( sin ⁡ ( h e a d i n g A ) , − cos ⁡ ( h e a d i n g A ) ) (3) \vec{v_2}=(dx2,dy2)=A.width_{half}\cdot(\sin(heading_A),-\cos(heading_A))\tag{3} v2 =(dx2,dy2)=A.widthhalf(sin(headingA),cos(headingA))(3)
其中, h e a d i n g A heading_A headingA为A的方向角,则 ( cos ⁡ ( h e a d i n g A ) , s i n ( h e a d i n g A ) ) (\cos(heading_A),\ sin(heading_A)) (cos(headingA), sin(headingA))为A的单位方向向量, ( sin ⁡ ( h e a d i n g A ) , − cos ⁡ ( h e a d i n g A ) (\sin(heading_A),-\cos(heading_A) (sin(headingA),cos(headingA)为A的单位法向量(为啥单位法向量这样表示?可参考线性代数相关知识)。

同理,以下四行代码分别计算的是B的纵向方向和横向方向的两个向量,纵向方向向量和横向方向向量的模分别是B的半长 l e n g t h h a l f length_{half} lengthhalf,半宽 w i d t h h a l f width_{half} widthhalf

  const double dx3 = box.cos_heading() * box.half_length();const double dy3 = box.sin_heading() * box.half_length();const double dx4 = box.sin_heading() * box.half_width();const double dy4 = -box.cos_heading() * box.half_width();

纵向向量:
v 3 ⃗ = ( d x 3 , d y 3 ) = B . l e n g t h h a l f ⋅ ( cos ⁡ ( h e a d i n g B ) , sin ⁡ ( h e a d i n g B ) ) (4) \vec{v_3}=(dx3,dy3)=B.length_{half}\cdot(\cos(heading_B),\sin(heading_B))\tag{4} v3 =(dx3,dy3)=B.lengthhalf(cos(headingB),sin(headingB))(4)
横向向量:
v 4 ⃗ = ( d x 4 , d y 4 ) = B . w i d t h h a l f ⋅ ( sin ⁡ ( h e a d i n g B ) , − cos ⁡ ( h e a d i n g B ) ) (5) \vec{v_4}=(dx4,dy4)=B.width_{half}\cdot(\sin(heading_B),-\cos(heading_B))\tag{5} v4 =(dx4,dy4)=B.widthhalf(sin(headingB),cos(headingB))(5)
其中, h e a d i n g B heading_B headingB为B的方向角,则 ( cos ⁡ ( h e a d i n g B ) , s i n ( h e a d i n g B ) ) (\cos(heading_B),\ sin(heading_B)) (cos(headingB), sin(headingB))为B的单位方向向量, ( sin ⁡ ( h e a d i n g B ) , − cos ⁡ ( h e a d i n g B ) (\sin(heading_B),-\cos(heading_B) (sin(headingB),cos(headingB)为A的单位法向量。

f3

f 3 f3 f3表示的是计算往A纵轴上的投影

std::abs(shift_x * cos_heading_ + shift_y * sin_heading_) <=std::abs(dx3 * cos_heading_ + dy3 * sin_heading_) +std::abs(dx4 * cos_heading_ + dy4 * sin_heading_) +half_length_

如下图所示
往A纵轴方向投影
结合代码和图片一块分析:
(1)代码中std::abs(shift_x * cos_heading_ + shift_y * sin_heading_)所表示的是向量 a b ⃗ \vec{ab} ab 在A的纵轴上投影的模c,结合公式(1)可知:
c = ∣ a b ⃗ ⋅ ( cos ⁡ ( h e a d i n g A ) , sin ⁡ ( h e a d i n g A ) ) ∣ = ∣ x s h i f t ⋅ cos ⁡ ( h e a d i n g A ) + y s h i f t ⋅ sin ⁡ ( h e a d i n g A ) ∣ c=|\vec{ab}\cdot(\cos(heading_A),\sin(heading_A))|=|x_{shift}\cdot\cos(heading_A)+y_{shift}\cdot\sin(heading_A)| c=ab (cos(headingA),sin(headingA))=xshiftcos(headingA)+yshiftsin(headingA)
(2)代码中std::abs(dx3 * cos_heading_ + dy3 * sin_heading_)所表示的是向量 v 3 ⃗ \vec{v_3} v3 在A的纵轴上投影的模 b 1 b1 b1,结合公式(4)可知:
b 1 = ∣ v 3 ⃗ ⋅ ( cos ⁡ ( h e a d i n g A ) , sin ⁡ ( h e a d i n g A ) ) ∣ = ∣ d x 3 ⋅ cos ⁡ ( h e a d i n g A ) + d y 3 ⋅ sin ⁡ ( h e a d i n g A ) ∣ b1=|\vec{v_3}\cdot(\cos(heading_A),\sin(heading_A))|=|dx3\cdot\cos(heading_A)+dy3\cdot\sin(heading_A)| b1=v3 (cos(headingA),sin(headingA))=dx3cos(headingA)+dy3sin(headingA)
代码中std::abs(dx4 * cos_heading_ + dy4 * sin_heading_)所表示的是向量 v 4 ⃗ \vec{v_4} v4 在A的纵轴上投影的模 b 2 b2 b2,结合公式(5)可知:
b 2 = ∣ v 4 ⃗ ⋅ ( cos ⁡ ( h e a d i n g A ) , sin ⁡ ( h e a d i n g A ) ) ∣ = ∣ d x 4 ⋅ cos ⁡ ( h e a d i n g A ) + d y 4 ⋅ sin ⁡ ( h e a d i n g A ) ∣ b2=|\vec{v_4}\cdot(\cos(heading_A),\sin(heading_A))|=|dx4\cdot\cos(heading_A)+dy4\cdot\sin(heading_A)| b2=v4 (cos(headingA),sin(headingA))=dx4cos(headingA)+dy4sin(headingA)
由上图可知:
b = b 1 + b 2 b=b1+b2 b=b1+b2
(3)代码中half_length_是向量 v 1 ⃗ \vec{v_1} v1 在其纵轴上的投影的模,另外,向量 v 2 ⃗ \vec{v_2} v2 此时在其纵轴上投影的模为0。
c 1 = b + l e n g t h h a l f c1=b+length_{half} c1=b+lengthhalf

f4

f 4 f4 f4表示的是计算往A横轴上的投影

 std::abs(shift_x * sin_heading_ - shift_y * cos_heading_) <=std::abs(dx3 * sin_heading_ - dy3 * cos_heading_) +std::abs(dx4 * sin_heading_ - dy4 * cos_heading_) +half_width_

如下图所示
往A横轴方向投影
结合代码和图片一块分析:
(1)代码中std::abs(shift_x * sin_heading_ - shift_y * cos_heading_)所表示的是向量 a b ⃗ \vec{ab} ab 在A的横轴上投影的模c,结合公式(1)可知:
c = ∣ a b ⃗ ⋅ ( sin ⁡ ( h e a d i n g A ) , − cos ⁡ ( h e a d i n g A ) ) ∣ = ∣ x s h i f t ⋅ sin ⁡ ( h e a d i n g A ) − y s h i f t ⋅ cos ⁡ ( h e a d i n g A ) ∣ c=|\vec{ab}\cdot(\sin(heading_A),-\cos(heading_A))|=|x_{shift}\cdot\sin(heading_A)-y_{shift}\cdot\cos(heading_A)| c=ab (sin(headingA),cos(headingA))=xshiftsin(headingA)yshiftcos(headingA)
(2)代码中std::abs(dx3 * sin_heading_ - dy3 * cos_heading_)所表示的是向量 v 3 ⃗ \vec{v_3} v3 在A的横轴上投影的模 b 1 b1 b1,结合公式(4)可知:
b 1 = ∣ v 3 ⃗ ⋅ ( sin ⁡ ( h e a d i n g A ) , − cos ⁡ ( h e a d i n g A ) ) ∣ = ∣ d x 3 ⋅ sin ⁡ ( h e a d i n g A ) − d y 3 ⋅ cos ⁡ ( h e a d i n g A ) ∣ b1=|\vec{v_3}\cdot(\sin(heading_A),-\cos(heading_A))|=|dx3\cdot\sin(heading_A)-dy3\cdot\cos(heading_A)| b1=v3 (sin(headingA),cos(headingA))=dx3sin(headingA)dy3cos(headingA)
代码中std::abs(dx4 * sin_heading_ - dy4 * cos_heading_)所表示的是向量 v 4 ⃗ \vec{v_4} v4 在A的横轴上投影的模 b 2 b2 b2,结合公式(5)可知:
b 2 = ∣ v 4 ⃗ ⋅ ( sin ⁡ ( h e a d i n g A ) , − cos ⁡ ( h e a d i n g A ) ) ∣ = ∣ d x 4 ⋅ sin ⁡ ( h e a d i n g A ) − d y 4 ⋅ cos ⁡ ( h e a d i n g A ) ∣ b2=|\vec{v_4}\cdot(\sin(heading_A),-\cos(heading_A))|=|dx4\cdot\sin(heading_A)-dy4\cdot\cos(heading_A)| b2=v4 (sin(headingA),cos(headingA))=dx4sin(headingA)dy4cos(headingA)
由上图可知:
b = b 1 + b 2 b=b1+b2 b=b1+b2
(3)代码中half_width_是向量 v 2 ⃗ \vec{v_2} v2 在其横轴上的投影的模,另外,向量 v 1 ⃗ \vec{v_1} v1 此时在其横轴上投影的模为0。
c 1 = b + w i d t h h a l f c1=b+width_{half} c1=b+widthhalf

f5

f 5 f5 f5表示的是计算往B纵轴上的投影

std::abs(shift_x * box.cos_heading() + shift_y * box.sin_heading()) <=std::abs(dx1 * box.cos_heading() + dy1 * box.sin_heading()) +std::abs(dx2 * box.cos_heading() + dy2 * box.sin_heading()) +box.half_length()

如下图所示:
往B纵轴方向投影
结合代码和图片一块分析:
(1)代码中std::abs(shift_x * box.cos_heading() + shift_y * box.sin_heading())所表示的是向量 a b ⃗ \vec{ab} ab 在B的纵轴上投影的模c,结合公式(1)可知:
c = ∣ a b ⃗ ⋅ ( cos ⁡ ( h e a d i n g B ) , sin ⁡ ( h e a d i n g B ) ) ∣ = ∣ x s h i f t ⋅ cos ⁡ ( h e a d i n g B ) + y s h i f t ⋅ sin ⁡ ( h e a d i n g B ) ∣ c=|\vec{ab}\cdot(\cos(heading_B),\sin(heading_B))|=|x_{shift}\cdot\cos(heading_B)+y_{shift}\cdot\sin(heading_B)| c=ab (cos(headingB),sin(headingB))=xshiftcos(headingB)+yshiftsin(headingB)
(2)代码中std::abs(dx1 * box.cos_heading() + dy1 * box.sin_heading())所表示的是向量 v 1 ⃗ \vec{v_1} v1 在B的纵轴上投影的模 a 1 a1 a1,结合公式(2)可知:
a 1 = ∣ v 1 ⃗ ⋅ ( cos ⁡ ( h e a d i n g B ) , sin ⁡ ( h e a d i n g B ) ) ∣ = ∣ d x 1 ⋅ cos ⁡ ( h e a d i n g B ) + d y 1 ⋅ sin ⁡ ( h e a d i n g B ) ∣ a1=|\vec{v_1}\cdot(\cos(heading_B),\sin(heading_B))|=|dx1\cdot\cos(heading_B)+dy1\cdot\sin(heading_B)| a1=v1 (cos(headingB),sin(headingB))=dx1cos(headingB)+dy1sin(headingB)
代码中std::abs(dx2 * box.cos_heading() + dy2 * box.sin_heading())所表示的是向量 v 2 ⃗ \vec{v_2} v2 在B的纵轴上投影的模 a 2 a2 a2,结合公式(3)可知:
a 2 = ∣ v 2 ⃗ ⋅ ( cos ⁡ ( h e a d i n g B ) , sin ⁡ ( h e a d i n g B ) ) ∣ = ∣ d x 2 ⋅ cos ⁡ ( h e a d i n g B ) + d y 2 ⋅ sin ⁡ ( h e a d i n g B ) ∣ a2=|\vec{v_2}\cdot(\cos(heading_B),\sin(heading_B))|=|dx2\cdot\cos(heading_B)+dy2\cdot\sin(heading_B)| a2=v2 (cos(headingB),sin(headingB))=dx2cos(headingB)+dy2sin(headingB)
由上图可知:
a = a 1 + a 2 a=a1+a2 a=a1+a2
(3)代码中half_length是向量 v 3 ⃗ \vec{v_3} v3 在其纵轴上的投影的模,另外,向量 v 4 ⃗ \vec{v_4} v4 此时在其纵轴上投影的模为0。
c 1 = a + l e n g t h h a l f c1=a+length_{half} c1=a+lengthhalf

f6

f 6 f6 f6表示的是计算往B横轴上的投影

std::abs(shift_x * box.sin_heading() - shift_y * box.cos_heading()) <=std::abs(dx1 * box.sin_heading() - dy1 * box.cos_heading()) +std::abs(dx2 * box.sin_heading() - dy2 * box.cos_heading()) +box.half_width()

如下图所示:
往B横轴方向投影
结合代码和图片一块分析:
(1)代码中std::abs(shift_x * box.sin_heading() - shift_y * box.cos_heading())所表示的是向量 a b ⃗ \vec{ab} ab 在B的横轴上投影的模c,结合公式(1)可知:
c = ∣ a b ⃗ ⋅ ( sin ⁡ ( h e a d i n g B ) , − cos ⁡ ( h e a d i n g B ) ) ∣ = ∣ x s h i f t ⋅ sin ⁡ ( h e a d i n g B ) − y s h i f t ⋅ cos ⁡ ( h e a d i n g B ) ∣ c=|\vec{ab}\cdot(\sin(heading_B),-\cos(heading_B))|=|x_{shift}\cdot\sin(heading_B)-y_{shift}\cdot\cos(heading_B)| c=ab (sin(headingB),cos(headingB))=xshiftsin(headingB)yshiftcos(headingB)
(2)代码中std::abs(dx1 * box.sin_heading() - dy1 * box.cos_heading())所表示的是向量 v 1 ⃗ \vec{v_1} v1 在B的横轴上投影的模 a 1 a1 a1,结合公式(2)可知:
a 1 = ∣ v 1 ⃗ ⋅ ( sin ⁡ ( h e a d i n g B ) , − cos ⁡ ( h e a d i n g B ) ) ∣ = ∣ d x 1 ⋅ sin ⁡ ( h e a d i n g B ) − d y 1 ⋅ cos ⁡ ( h e a d i n g B ) ∣ a1=|\vec{v_1}\cdot(\sin(heading_B),-\cos(heading_B))|=|dx1\cdot\sin(heading_B)-dy1\cdot\cos(heading_B)| a1=v1 (sin(headingB),cos(headingB))=dx1sin(headingB)dy1cos(headingB)
代码中std::abs(dx2 * box.sin_heading() - dy2 * box.cos_heading())所表示的是向量 v 2 ⃗ \vec{v_2} v2 在B的横轴上投影的模 a 2 a2 a2,结合公式(3)可知:
a 2 = ∣ v 2 ⃗ ⋅ ( sin ⁡ ( h e a d i n g B ) , − cos ⁡ ( h e a d i n g B ) ) ∣ = ∣ d x 2 ⋅ sin ⁡ ( h e a d i n g B ) − d y 2 ⋅ cos ⁡ ( h e a d i n g B ) ∣ a2=|\vec{v_2}\cdot(\sin(heading_B),-\cos(heading_B))|=|dx2\cdot\sin(heading_B)-dy2\cdot\cos(heading_B)| a2=v2 (sin(headingB),cos(headingB))=dx2sin(headingB)dy2cos(headingB)
由上图可知:
a = a 1 + a 2 a=a1+a2 a=a1+a2
(3)代码中half_width是向量 v 4 ⃗ \vec{v_4} v4 在其横轴上的投影的模,另外,向量 v 3 ⃗ \vec{v_3} v3 此时在其横轴上投影的模为0。
c 1 = a + w i d t h h a l f c1=a+width_{half} c1=a+widthhalf

若步骤f3~f6均满足 c < = c 1 c<=c1 c<=c1,则可判定两个Box存在碰撞(具体原理可参考OBB原理)。

参考

[1] Apollo中Lattice轨迹碰撞检测
[2]自动驾驶运动规划中的碰撞检测

这篇关于百度Apollo规划算法——OBB障碍物检测代码解析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/qq_38422317/article/details/131996644
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/750067

相关文章

MySQL CTE (Common Table Expressions)示例全解析

《MySQLCTE(CommonTableExpressions)示例全解析》MySQL8.0引入CTE,支持递归查询,可创建临时命名结果集,提升复杂查询的可读性与维护性,适用于层次结构数据处... 目录基本语法CTE 主要特点非递归 CTE简单 CTE 示例多 CTE 示例递归 CTE基本递归 CTE 结

Spring Boot 3.x 中 WebClient 示例详解析

《SpringBoot3.x中WebClient示例详解析》SpringBoot3.x中WebClient是响应式HTTP客户端,替代RestTemplate,支持异步非阻塞请求,涵盖GET... 目录Spring Boot 3.x 中 WebClient 全面详解及示例1. WebClient 简介2.

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分

C#解析JSON数据全攻略指南

《C#解析JSON数据全攻略指南》这篇文章主要为大家详细介绍了使用C#解析JSON数据全攻略指南,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 目录一、为什么jsON是C#开发必修课?二、四步搞定网络JSON数据1. 获取数据 - HttpClient最佳实践2. 动态解析 - 快速

Spring Boot3.0新特性全面解析与应用实战

《SpringBoot3.0新特性全面解析与应用实战》SpringBoot3.0作为Spring生态系统的一个重要里程碑,带来了众多令人兴奋的新特性和改进,本文将深入解析SpringBoot3.0的... 目录核心变化概览Java版本要求提升迁移至Jakarta EE重要新特性详解1. Native Ima

Python实现MQTT通信的示例代码

《Python实现MQTT通信的示例代码》本文主要介绍了Python实现MQTT通信的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 安装paho-mqtt库‌2. 搭建MQTT代理服务器(Broker)‌‌3. pytho

spring中的@MapperScan注解属性解析

《spring中的@MapperScan注解属性解析》@MapperScan是Spring集成MyBatis时自动扫描Mapper接口的注解,简化配置并支持多数据源,通过属性控制扫描路径和过滤条件,利... 目录一、核心功能与作用二、注解属性解析三、底层实现原理四、使用场景与最佳实践五、注意事项与常见问题六

MySQL进行数据库审计的详细步骤和示例代码

《MySQL进行数据库审计的详细步骤和示例代码》数据库审计通过触发器、内置功能及第三方工具记录和监控数据库活动,确保安全、完整与合规,Java代码实现自动化日志记录,整合分析系统提升监控效率,本文给大... 目录一、数据库审计的基本概念二、使用触发器进行数据库审计1. 创建审计表2. 创建触发器三、Java

nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析(结合应用场景)

《nginx-t、nginx-sstop和nginx-sreload命令的详细解析(结合应用场景)》本文解析Nginx的-t、-sstop、-sreload命令,分别用于配置语法检... 以下是关于 nginx -t、nginx -s stop 和 nginx -s reload 命令的详细解析,结合实际应

MyBatis中$与#的区别解析

《MyBatis中$与#的区别解析》文章浏览阅读314次,点赞4次,收藏6次。MyBatis使用#{}作为参数占位符时,会创建预处理语句(PreparedStatement),并将参数值作为预处理语句... 目录一、介绍二、sql注入风险实例一、介绍#(井号):MyBATis使用#{}作为参数占位符时,会