自然语言处理Gensim入门:建模与模型保存

2024-02-26 04:12

本文主要是介绍自然语言处理Gensim入门:建模与模型保存,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

文章目录

  • 自然语言处理Gensim入门:建模与模型保存
    • 关于gensim基础知识
    • 1. 模块导入
    • 2. 内部变量定义
    • 3. 主函数入口 (`if __name__ == '__main__':`)
    • 4. 加载语料库映射
    • 5. 加载和预处理语料库
    • 6. 根据方法参数选择模型训练方式
    • 7. 保存模型和变换后的语料
    • 8.代码

自然语言处理Gensim入门:建模与模型保存

关于gensim基础知识

Gensim是一个专门针对大规模文本数据进行主题建模和相似性检索的Python库。
MmCorpus是gensim用于高效读写大型稀疏矩阵的一种格式,适用于大数据集。
TF-IDF是一种常见的文本表示方法,通过对词频进行加权以突出重要性较高的词语。
LSI、LDA和RP都是降维或主题提取方法,常用于信息检索、文本分类和聚类任务。

这段代码是使用gensim库生成主题模型的一个脚本,它根据用户提供的语言和方法参数来训练文本数据集,并将训练好的模型保存为文件。以下是核心代码逻辑的分析与解释:

1. 模块导入

  • 导入了logging模块用于记录程序运行日志。
  • 导入sys模块以获取命令行参数和程序名。
  • 导入os.path模块处理文件路径相关操作。
  • 从gensim.corpora导入dmlcorpus(一个用于加载特定格式语料库的模块)和MmCorpus(存储稀疏矩阵表示的文档-词项矩阵的类)。
  • 从gensim.models导入四个模型:lsimodel、ldamodel、tfidfmodel、rpmodel,分别对应潜在语义索引(LSI)、潜在狄利克雷分配(LDA)、TF-IDF转换模型以及随机投影(RP)。

2. 内部变量定义

  • DIM_RP, DIM_LSI, DIM_LDA 分别指定了RP、LSI和LDA模型的维度大小。

3. 主函数入口 (if __name__ == '__main__':)

  • 配置日志输出格式并设置日志级别为INFO。
  • 检查输入参数数量是否满足要求(至少包含语言和方法两个参数),否则打印帮助信息并退出程序。
  • 获取指定的语言和方法参数。

4. 加载语料库映射

  • 根据传入的语言参数创建DmlConfig对象,该对象包含了语料库的相关配置信息,如存放结果的目录等。
  • 加载词汇表字典,即wordids.txt文件,将其转换成id2word字典结构,以便在后续模型构建中将词语ID映射回实际词语。

5. 加载和预处理语料库

  • 使用MmCorpus加载二进制bow.mm文件,该文件存储了文档-词项矩阵,每个文档是一个稀疏向量表示。

6. 根据方法参数选择模型训练方式

  • 如果方法为’tfidf’,则训练并保存TF-IDF模型,该模型对原始词频进行加权,增加了逆文档频率因子。
  • 若方法为’lda’,则训练LDA模型,这是一个基于概率统计的主题模型,通过文档-主题分布和主题-词语分布抽取主题结构。
  • 若方法为’lsi’,首先用TF-IDF模型转换语料,然后在此基础上训练LSI模型,它是一种线性代数方法,用于发现文本中的潜在主题空间。
  • 若方法为’rp’,同样先转为TF-IDF表示,然后训练RP模型,利用随机投影技术降低数据维数。
  • 对于未知的方法,抛出ValueError异常。

7. 保存模型和变换后的语料

  • 训练完相应模型后,将其保存到指定的文件中(例如model_lda.pkl或model_lsi.pkl)。
  • 将原始语料经过所训练模型变换后得到的新语料(即主题表示形式)保存为一个新的MM格式文件,文件名反映所使用的主题模型方法。

8.代码

#!/usr/bin/env python
#
# Copyright (C) 2010 Radim Rehurek <radimrehurek@seznam.cz>
# Licensed under the GNU LGPL v2.1 - https://www.gnu.org/licenses/old-licenses/lgpl-2.1.en.html"""
USAGE: %(program)s LANGUAGE METHODGenerate topic models for the specified subcorpus. METHOD is currently one \
of 'tfidf', 'lsi', 'lda', 'rp'.Example: ./gensim_genmodel.py any lsi
"""import logging
import sys
import os.pathfrom gensim.corpora import dmlcorpus, MmCorpus
from gensim.models import lsimodel, ldamodel, tfidfmodel, rpmodelimport gensim_build# internal method parameters
DIM_RP = 300  # dimensionality for random projections
DIM_LSI = 200  # for lantent semantic indexing
DIM_LDA = 100  # for latent dirichlet allocationif __name__ == '__main__':logging.basicConfig(format='%(asctime)s : %(levelname)s : %(message)s')logging.root.setLevel(level=logging.INFO)logging.info("running %s", ' '.join(sys.argv))program = os.path.basename(sys.argv[0])# check and process input argumentsif len(sys.argv) < 3:print(globals()['__doc__'] % locals())sys.exit(1)language = sys.argv[1]method = sys.argv[2].strip().lower()logging.info("loading corpus mappings")config = dmlcorpus.DmlConfig('%s_%s' % (gensim_build.PREFIX, language),resultDir=gensim_build.RESULT_DIR, acceptLangs=[language])logging.info("loading word id mapping from %s", config.resultFile('wordids.txt'))id2word = dmlcorpus.DmlCorpus.loadDictionary(config.resultFile('wordids.txt'))logging.info("loaded %i word ids", len(id2word))corpus = MmCorpus(config.resultFile('bow.mm'))if method == 'tfidf':model = tfidfmodel.TfidfModel(corpus, id2word=id2word, normalize=True)model.save(config.resultFile('model_tfidf.pkl'))elif method == 'lda':model = ldamodel.LdaModel(corpus, id2word=id2word, num_topics=DIM_LDA)model.save(config.resultFile('model_lda.pkl'))elif method == 'lsi':# first, transform word counts to tf-idf weightstfidf = tfidfmodel.TfidfModel(corpus, id2word=id2word, normalize=True)# then find the transformation from tf-idf to latent spacemodel = lsimodel.LsiModel(tfidf[corpus], id2word=id2word, num_topics=DIM_LSI)model.save(config.resultFile('model_lsi.pkl'))elif method == 'rp':# first, transform word counts to tf-idf weightstfidf = tfidfmodel.TfidfModel(corpus, id2word=id2word, normalize=True)# then find the transformation from tf-idf to latent spacemodel = rpmodel.RpModel(tfidf[corpus], id2word=id2word, num_topics=DIM_RP)model.save(config.resultFile('model_rp.pkl'))else:raise ValueError('unknown topic extraction method: %s' % repr(method))MmCorpus.saveCorpus(config.resultFile('%s.mm' % method), model[corpus])logging.info("finished running %s", program)

这篇关于自然语言处理Gensim入门:建模与模型保存的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/747678

相关文章

解决docker目录内存不足扩容处理方案

《解决docker目录内存不足扩容处理方案》文章介绍了Docker存储目录迁移方法:因系统盘空间不足,需将Docker数据迁移到更大磁盘(如/home/docker),通过修改daemon.json配... 目录1、查看服务器所有磁盘的使用情况2、查看docker镜像和容器存储目录的空间大小3、停止dock

5 种使用Python自动化处理PDF的实用方法介绍

《5种使用Python自动化处理PDF的实用方法介绍》自动化处理PDF文件已成为减少重复工作、提升工作效率的重要手段,本文将介绍五种实用方法,从内置工具到专业库,帮助你在Python中实现PDF任务... 目录使用内置库(os、subprocess)调用外部工具使用 PyPDF2 进行基本 PDF 操作使用

分析 Java Stream 的 peek使用实践与副作用处理方案

《分析JavaStream的peek使用实践与副作用处理方案》StreamAPI的peek操作是中间操作,用于观察元素但不终止流,其副作用风险包括线程安全、顺序混乱及性能问题,合理使用场景有限... 目录一、peek 操作的本质:有状态的中间操作二、副作用的定义与风险场景1. 并行流下的线程安全问题2. 顺

Python异常处理之避免try-except滥用的3个核心原则

《Python异常处理之避免try-except滥用的3个核心原则》在Python开发中,异常处理是保证程序健壮性的关键机制,本文结合真实案例与Python核心机制,提炼出避免异常滥用的三大原则,有需... 目录一、精准打击:只捕获可预见的异常类型1.1 通用异常捕获的陷阱1.2 精准捕获的实践方案1.3

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

Linux五种IO模型的使用解读

《Linux五种IO模型的使用解读》文章系统解析了Linux的五种IO模型(阻塞、非阻塞、IO复用、信号驱动、异步),重点区分同步与异步IO的本质差异,强调同步由用户发起,异步由内核触发,通过对比各模... 目录1.IO模型简介2.五种IO模型2.1 IO模型分析方法2.2 阻塞IO2.3 非阻塞IO2.4

Python动态处理文件编码的完整指南

《Python动态处理文件编码的完整指南》在Python文件处理的高级应用中,我们经常会遇到需要动态处理文件编码的场景,本文将深入探讨Python中动态处理文件编码的技术,有需要的小伙伴可以了解下... 目录引言一、理解python的文件编码体系1.1 Python的IO层次结构1.2 编码问题的常见场景二

Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧

《Python函数的基本用法、返回值特性、全局变量修改及异常处理技巧》本文将通过实际代码示例,深入讲解Python函数的基本用法、返回值特性、全局变量修改以及异常处理技巧,感兴趣的朋友跟随小编一起看看... 目录一、python函数定义与调用1.1 基本函数定义1.2 函数调用二、函数返回值详解2.1 有返

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建