【大数据】Flink 内存管理(二):JobManager 内存分配(含实际计算案例)

2024-02-25 15:04

本文主要是介绍【大数据】Flink 内存管理(二):JobManager 内存分配(含实际计算案例),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Flink 内存管理》系列(已完结),共包含以下 4 篇文章:

  • Flink 内存管理(一):设置 Flink 进程内存
  • Flink 内存管理(二):JobManager 内存分配(含实际计算案例)
  • Flink 内存管理(三):TaskManager 内存分配(理论篇)
  • Flink 内存管理(四):TaskManager 内存分配(实战篇)

😊 如果您觉得这篇文章有用 ✔️ 的话,请给博主一个一键三连 🚀🚀🚀 吧 (点赞 🧡、关注 💛、收藏 💚)!!!您的支持 💖💖💖 将激励 🔥 博主输出更多优质内容!!!

Flink 内存管理(二):JobManager 内存分配

  • 1.分配 Total Process Size
  • 2.分配 Total Flink Size
  • 3.单独分配 Heap Size
  • 4.分配 Total Process Size 和 Heap Size
  • 5.分配 Total Flink Size 和 Heap Size

JobManager 是 Flink 集群的控制元素。它由三个不同的组件组成: 资源管理器(Resource Manager)、调度器(Dispatcher)和每个运行中的 Flink 作业的一个作业管理器(JobMaster)。

JobManager 的内存模型如下:
在这里插入图片描述
以上 Total Process Memory 的模型图可以分为以下的 4 个内存组件,如果在分配内存的时候,显示的指定了组件其中的 1 1 1 个或者多个,那么 JVM Overhead 的值就是在其它组件确定的情况下,用 Total Process Size - 其它获取的值,必须在 min - max 之间,如果没有指定组件的值,那么就按照 0.1 0.1 0.1 的比例进行计算得到,如果计算出的值小于 minmin,如果大于 maxmax,如果 minmax 指定的相等,那么这个 JVM Overhead 就是一个确定的值!

内存组件
配置选项
内存组件的功能
JVM Heapjobmanager.memory.heap.sizeJobManager 的 JVM 堆内存大小。这个大小取决于提交的作业个数和作业的结构以及用户代码的要求。主要用来运行 Flink 框架,执行作业提交时的用户代码以及 Checkpoint 的回调代码。
Off-Heap Memoryjobmanager.memory.off-heap.sizeJM 的对外内存的大小。涵盖了所有 Direct 和 Native 的内存分配。用来执行 akka 等外部依赖,同时也负责运行 Checkpoint 回调及作业提交时的用户代码,有默认值 128 M 128M 128M
JVM Metaspacejobmanager.memory.jvm-metaspace.sizeJM 的元空间大小,有默认值 256 M 256M 256M, 属于 Native Memory。
JVM Overheadjobmanager.memory.jvm-overhead.min jobmanager.memory.jvm-overhead.max jobmanager.memory.jvm-overhead.fractionJVM 额外开销。为 Thread Stacks,Code Cache,Garbage Collection Space 预留的 Native Memory,有默认的 faction of total process size,但是必须在其 min & max 之间。

在 《Flink 内存管理(一):设置 Flink 进程内存》中我们提到,必须使用下述三种方法之一配置 Flink 的内存(本地执行除外),否则 Flink 启动将失败。这意味着必须明确配置以下选项子集之一,这些子集没有默认值。

序号for TaskManagerfor JobManager
1️⃣taskmanager.memory.flink.sizejobmanager.memory.flink.size
2️⃣taskmanager.memory.process.sizejobmanager.memory.process.size
3️⃣taskmanager.memory.task.heap.sizetaskmanager.memory.managed.sizejobmanager.memory.heap.size

1.分配 Total Process Size

  • jobmanager.memory.process.size

在这里插入图片描述
在这里插入图片描述

此时我们只显示指定了 jobmanager.memory.process.size 的值,没有指定其它组件,此时整个 JobManager 的 JVM 进程能占用的内存为 2000 M 2000M 2000M

  • Total Process Size = 2000 M = 2000M =2000M(这是分配的基准值)
  • JVM Overhead 因为没有指定其它组件内存,所以被按照 0.1 0.1 0.1 的比例推断成: 2000 M × 0.1 × 1024 × 1024 = 209715203 B = 200 M 2000M × 0.1 × 1024 × 1024 = 209715203B = 200M 2000M×0.1×1024×1024=209715203B=200M
  • JVM Metaspace 默认值为 256 M 256M 256M
  • Off-Heap Memeory 默认值为 128 M 128M 128M
  • JVM Heap 最终被推断为 2000 M − 200 M − 256 M − 128 M = 1.38 G 2000M - 200M - 256M - 128M = 1.38G 2000M200M256M128M=1.38G

为啥 JVM Heap 只有 1.33 G B 1.33GB 1.33GB 而不是 1.38 G B 1.38GB 1.38GB 呢?

在这里插入图片描述
其实这个取决于你使用的 GC 算法会占用其中很小一部分固定内存作为 Non-Heap,该占用部分大小为: 1.38 − 1.33 = 0.05 G B 1.38-1.33 = 0.05GB 1.381.33=0.05GB

2.分配 Total Flink Size

  • jobmanager.memory.flink.size

在这里插入图片描述
在这里插入图片描述

此时我们只显示指定了 jobmanager.memory.flink.size 的值,也没有指定其它组件如 Heap Size,此时整个 JobManager 的 JVM 进程除了 JVM OverheadJVM Metaspace 之外能占用的内存为 2000 M 2000M 2000M

  • Total Flink Size = 2000 M = 1.95 G = 2000M = 1.95G =2000M=1.95G(这属于 Total Process Size 的组件之一,Overhead 只能最后按剩余的内存来被推断)
  • JVM Metaspace 默认值为 256 M 256M 256M(固定默认值)
  • Off-Heap Memeory 默认值为 128 M 128M 128M(固定默认值)
  • JVM Heap = 2000 M − 128 M − 80 M B ( G C 算法占用) = 1.75 G B = 2000M - 128M - 80MB(GC算法占用)= 1.75GB =2000M128M80MBGC算法占用)=1.75GB
  • 根据 JVM Overhead = = =(JVM Overhead + Metaspace 256 M 256M 256M + Flink Size 2000 M ) × 0.1 2000 M) ×\ 0.1 2000M)× 0.1,计算可得:
    • Total Process Size = 2.448 G B = 2.448GB =2.448GB
    • JVM Overhead = 2.448 G B × 0.1 = 262843055 B = 250.667 M B = 2.448GB × 0.1 = 262843055B = 250.667MB =2.448GB×0.1=262843055B=250.667MB,在 192 M ~ 1 G B 192M~1GB 192M1GB,为有效

最终资源的分配如以下日志所示:

在这里插入图片描述

3.单独分配 Heap Size

  • jobmanager.memory.heap.size

在这里插入图片描述
在这里插入图片描述

此时我们只显示指定了 jobmanager.memory.heap.size 的值,相当于显示配置了组件的值,此时整个 JobManager 的 JVM Heap 被指定为最大内存为 1000 M 1000M 1000M

  • JVM Heap 被指定为 1000 M 1000M 1000M,但是得从 GC 算法中扣除 41 M B 41MB 41MB,实际 JVM Heap = 959 M B = 959MB =959MB
  • JVM Metaspace 默认值为 256 M 256M 256M
  • Off-Heap Memeory 默认值为 128 M 128M 128M
  • Total Flink Size = 1128 M B = 1.102 G B = 1128MB = 1.102GB =1128MB=1.102GB
  • JVM Overhead = ( 1128 M B + 256 M + = (1128MB + 256M + =(1128MB+256M+ JVM Overhead ) × 0.1 ) × 0.1 )×0.1
    • JVM Overhead = 153.778 < 192 M B = 153.778 < 192MB =153.778<192MB(默认的 min),所以 JVM Overhead = 192 M B = 192MB =192MB
  • Total Process Size = 1128 M B + 256 M + = 1128MB + 256M + =1128MB+256M+ JVM Overhead = 1576 M B = 1.5390625 G B = 1.539 G B = 1576MB = 1.5390625GB = 1.539GB =1576MB=1.5390625GB=1.539GB

在这里插入图片描述

4.分配 Total Process Size 和 Heap Size

在这里插入图片描述
在这里插入图片描述
由于指定了 heap.size 内存组件的的大小,那么 JVM Overhead 就是取剩余的 Total Process Size 的内存空间。

  • Total Process Size = 2000 M B = 2000MB =2000MB && JVM Heap = 1000 M B = 1000MB =1000MB,实际只有 959 M B 959MB 959MB,因为减去了 41 M B 41MB 41MB 的 GC 算法占用空间
  • JVM Metaspace 默认值为 256 M 256M 256M
  • Off-Heap Memeory 默认值为 128 M 128M 128M
  • Total Flink Size = 1000 M B + 128 M B = 1128 M B = 1000MB + 128MB = 1128MB =1000MB+128MB=1128MB
  • JVM Overhead = 2000 M B − 1128 M B − 256 M B = 616 M B = 2000MB - 1128MB - 256MB = 616MB =2000MB1128MB256MB=616MB

在这里插入图片描述

5.分配 Total Flink Size 和 Heap Size

在这里插入图片描述
在这里插入图片描述

由于指定了 head.size 组件的大小,那么 Overhead 就按照剩余 Total Process Size 的内存空间分配。

  • Total Flink Size = 2000 M B = 2000MB =2000MB && JVM Heap = 1000 M B = 1000MB =1000MB,实际 959 M B 959MB 959MB,减去了 GC 算法的占用空间
  • JVM Off-Heap = 2000 M B − 1000 M B = 1000 M B = 2000MB - 1000MB = 1000MB =2000MB1000MB=1000MB
  • JVM Metaspace = 256 M B = 256MB =256MB
  • 首先根据 JVM Overhead = ( = ( =(JVM Overhead + + + Metaspace 256 M 256M 256M + + + Flink Size 2000 M ) × 0.1 2000M) × 0.1 2000M)×0.1
    • Total Process Size = 2.448 G B = 2.448GB =2.448GB
    • JVM Overhead = 2.448 G B × 0.1 = 262843055 B = 250.667 M B = 2.448GB × 0.1 = 262843055B = 250.667MB =2.448GB×0.1=262843055B=250.667MB,在 192 M ~ 1 G B 192M~1GB 192M1GB,为有效
  • 最终确定 Total Process Size = 2.448 G B = 2.448GB =2.448GB && JVM Overhead = 250.667 M B = 250.667MB =250.667MB

在这里插入图片描述

这篇关于【大数据】Flink 内存管理(二):JobManager 内存分配(含实际计算案例)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/745846

相关文章

Java注解之超越Javadoc的元数据利器详解

《Java注解之超越Javadoc的元数据利器详解》本文将深入探讨Java注解的定义、类型、内置注解、自定义注解、保留策略、实际应用场景及最佳实践,无论是初学者还是资深开发者,都能通过本文了解如何利用... 目录什么是注解?注解的类型内置注编程解自定义注解注解的保留策略实际用例最佳实践总结在 Java 编程

windows和Linux使用命令行计算文件的MD5值

《windows和Linux使用命令行计算文件的MD5值》在Windows和Linux系统中,您可以使用命令行(终端或命令提示符)来计算文件的MD5值,文章介绍了在Windows和Linux/macO... 目录在Windows上:在linux或MACOS上:总结在Windows上:可以使用certuti

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

gradle第三方Jar包依赖统一管理方式

《gradle第三方Jar包依赖统一管理方式》:本文主要介绍gradle第三方Jar包依赖统一管理方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录背景实现1.顶层模块build.gradle添加依赖管理插件2.顶层模块build.gradle添加所有管理依赖包

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java Stream流使用案例深入详解

《JavaStream流使用案例深入详解》:本文主要介绍JavaStream流使用案例详解,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录前言1. Lambda1.1 语法1.2 没参数只有一条语句或者多条语句1.3 一个参数只有一条语句或者多