【大数据】Flink 内存管理(二):JobManager 内存分配(含实际计算案例)

2024-02-25 15:04

本文主要是介绍【大数据】Flink 内存管理(二):JobManager 内存分配(含实际计算案例),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Flink 内存管理》系列(已完结),共包含以下 4 篇文章:

  • Flink 内存管理(一):设置 Flink 进程内存
  • Flink 内存管理(二):JobManager 内存分配(含实际计算案例)
  • Flink 内存管理(三):TaskManager 内存分配(理论篇)
  • Flink 内存管理(四):TaskManager 内存分配(实战篇)

😊 如果您觉得这篇文章有用 ✔️ 的话,请给博主一个一键三连 🚀🚀🚀 吧 (点赞 🧡、关注 💛、收藏 💚)!!!您的支持 💖💖💖 将激励 🔥 博主输出更多优质内容!!!

Flink 内存管理(二):JobManager 内存分配

  • 1.分配 Total Process Size
  • 2.分配 Total Flink Size
  • 3.单独分配 Heap Size
  • 4.分配 Total Process Size 和 Heap Size
  • 5.分配 Total Flink Size 和 Heap Size

JobManager 是 Flink 集群的控制元素。它由三个不同的组件组成: 资源管理器(Resource Manager)、调度器(Dispatcher)和每个运行中的 Flink 作业的一个作业管理器(JobMaster)。

JobManager 的内存模型如下:
在这里插入图片描述
以上 Total Process Memory 的模型图可以分为以下的 4 个内存组件,如果在分配内存的时候,显示的指定了组件其中的 1 1 1 个或者多个,那么 JVM Overhead 的值就是在其它组件确定的情况下,用 Total Process Size - 其它获取的值,必须在 min - max 之间,如果没有指定组件的值,那么就按照 0.1 0.1 0.1 的比例进行计算得到,如果计算出的值小于 minmin,如果大于 maxmax,如果 minmax 指定的相等,那么这个 JVM Overhead 就是一个确定的值!

内存组件
配置选项
内存组件的功能
JVM Heapjobmanager.memory.heap.sizeJobManager 的 JVM 堆内存大小。这个大小取决于提交的作业个数和作业的结构以及用户代码的要求。主要用来运行 Flink 框架,执行作业提交时的用户代码以及 Checkpoint 的回调代码。
Off-Heap Memoryjobmanager.memory.off-heap.sizeJM 的对外内存的大小。涵盖了所有 Direct 和 Native 的内存分配。用来执行 akka 等外部依赖,同时也负责运行 Checkpoint 回调及作业提交时的用户代码,有默认值 128 M 128M 128M
JVM Metaspacejobmanager.memory.jvm-metaspace.sizeJM 的元空间大小,有默认值 256 M 256M 256M, 属于 Native Memory。
JVM Overheadjobmanager.memory.jvm-overhead.min jobmanager.memory.jvm-overhead.max jobmanager.memory.jvm-overhead.fractionJVM 额外开销。为 Thread Stacks,Code Cache,Garbage Collection Space 预留的 Native Memory,有默认的 faction of total process size,但是必须在其 min & max 之间。

在 《Flink 内存管理(一):设置 Flink 进程内存》中我们提到,必须使用下述三种方法之一配置 Flink 的内存(本地执行除外),否则 Flink 启动将失败。这意味着必须明确配置以下选项子集之一,这些子集没有默认值。

序号for TaskManagerfor JobManager
1️⃣taskmanager.memory.flink.sizejobmanager.memory.flink.size
2️⃣taskmanager.memory.process.sizejobmanager.memory.process.size
3️⃣taskmanager.memory.task.heap.sizetaskmanager.memory.managed.sizejobmanager.memory.heap.size

1.分配 Total Process Size

  • jobmanager.memory.process.size

在这里插入图片描述
在这里插入图片描述

此时我们只显示指定了 jobmanager.memory.process.size 的值,没有指定其它组件,此时整个 JobManager 的 JVM 进程能占用的内存为 2000 M 2000M 2000M

  • Total Process Size = 2000 M = 2000M =2000M(这是分配的基准值)
  • JVM Overhead 因为没有指定其它组件内存,所以被按照 0.1 0.1 0.1 的比例推断成: 2000 M × 0.1 × 1024 × 1024 = 209715203 B = 200 M 2000M × 0.1 × 1024 × 1024 = 209715203B = 200M 2000M×0.1×1024×1024=209715203B=200M
  • JVM Metaspace 默认值为 256 M 256M 256M
  • Off-Heap Memeory 默认值为 128 M 128M 128M
  • JVM Heap 最终被推断为 2000 M − 200 M − 256 M − 128 M = 1.38 G 2000M - 200M - 256M - 128M = 1.38G 2000M200M256M128M=1.38G

为啥 JVM Heap 只有 1.33 G B 1.33GB 1.33GB 而不是 1.38 G B 1.38GB 1.38GB 呢?

在这里插入图片描述
其实这个取决于你使用的 GC 算法会占用其中很小一部分固定内存作为 Non-Heap,该占用部分大小为: 1.38 − 1.33 = 0.05 G B 1.38-1.33 = 0.05GB 1.381.33=0.05GB

2.分配 Total Flink Size

  • jobmanager.memory.flink.size

在这里插入图片描述
在这里插入图片描述

此时我们只显示指定了 jobmanager.memory.flink.size 的值,也没有指定其它组件如 Heap Size,此时整个 JobManager 的 JVM 进程除了 JVM OverheadJVM Metaspace 之外能占用的内存为 2000 M 2000M 2000M

  • Total Flink Size = 2000 M = 1.95 G = 2000M = 1.95G =2000M=1.95G(这属于 Total Process Size 的组件之一,Overhead 只能最后按剩余的内存来被推断)
  • JVM Metaspace 默认值为 256 M 256M 256M(固定默认值)
  • Off-Heap Memeory 默认值为 128 M 128M 128M(固定默认值)
  • JVM Heap = 2000 M − 128 M − 80 M B ( G C 算法占用) = 1.75 G B = 2000M - 128M - 80MB(GC算法占用)= 1.75GB =2000M128M80MBGC算法占用)=1.75GB
  • 根据 JVM Overhead = = =(JVM Overhead + Metaspace 256 M 256M 256M + Flink Size 2000 M ) × 0.1 2000 M) ×\ 0.1 2000M)× 0.1,计算可得:
    • Total Process Size = 2.448 G B = 2.448GB =2.448GB
    • JVM Overhead = 2.448 G B × 0.1 = 262843055 B = 250.667 M B = 2.448GB × 0.1 = 262843055B = 250.667MB =2.448GB×0.1=262843055B=250.667MB,在 192 M ~ 1 G B 192M~1GB 192M1GB,为有效

最终资源的分配如以下日志所示:

在这里插入图片描述

3.单独分配 Heap Size

  • jobmanager.memory.heap.size

在这里插入图片描述
在这里插入图片描述

此时我们只显示指定了 jobmanager.memory.heap.size 的值,相当于显示配置了组件的值,此时整个 JobManager 的 JVM Heap 被指定为最大内存为 1000 M 1000M 1000M

  • JVM Heap 被指定为 1000 M 1000M 1000M,但是得从 GC 算法中扣除 41 M B 41MB 41MB,实际 JVM Heap = 959 M B = 959MB =959MB
  • JVM Metaspace 默认值为 256 M 256M 256M
  • Off-Heap Memeory 默认值为 128 M 128M 128M
  • Total Flink Size = 1128 M B = 1.102 G B = 1128MB = 1.102GB =1128MB=1.102GB
  • JVM Overhead = ( 1128 M B + 256 M + = (1128MB + 256M + =(1128MB+256M+ JVM Overhead ) × 0.1 ) × 0.1 )×0.1
    • JVM Overhead = 153.778 < 192 M B = 153.778 < 192MB =153.778<192MB(默认的 min),所以 JVM Overhead = 192 M B = 192MB =192MB
  • Total Process Size = 1128 M B + 256 M + = 1128MB + 256M + =1128MB+256M+ JVM Overhead = 1576 M B = 1.5390625 G B = 1.539 G B = 1576MB = 1.5390625GB = 1.539GB =1576MB=1.5390625GB=1.539GB

在这里插入图片描述

4.分配 Total Process Size 和 Heap Size

在这里插入图片描述
在这里插入图片描述
由于指定了 heap.size 内存组件的的大小,那么 JVM Overhead 就是取剩余的 Total Process Size 的内存空间。

  • Total Process Size = 2000 M B = 2000MB =2000MB && JVM Heap = 1000 M B = 1000MB =1000MB,实际只有 959 M B 959MB 959MB,因为减去了 41 M B 41MB 41MB 的 GC 算法占用空间
  • JVM Metaspace 默认值为 256 M 256M 256M
  • Off-Heap Memeory 默认值为 128 M 128M 128M
  • Total Flink Size = 1000 M B + 128 M B = 1128 M B = 1000MB + 128MB = 1128MB =1000MB+128MB=1128MB
  • JVM Overhead = 2000 M B − 1128 M B − 256 M B = 616 M B = 2000MB - 1128MB - 256MB = 616MB =2000MB1128MB256MB=616MB

在这里插入图片描述

5.分配 Total Flink Size 和 Heap Size

在这里插入图片描述
在这里插入图片描述

由于指定了 head.size 组件的大小,那么 Overhead 就按照剩余 Total Process Size 的内存空间分配。

  • Total Flink Size = 2000 M B = 2000MB =2000MB && JVM Heap = 1000 M B = 1000MB =1000MB,实际 959 M B 959MB 959MB,减去了 GC 算法的占用空间
  • JVM Off-Heap = 2000 M B − 1000 M B = 1000 M B = 2000MB - 1000MB = 1000MB =2000MB1000MB=1000MB
  • JVM Metaspace = 256 M B = 256MB =256MB
  • 首先根据 JVM Overhead = ( = ( =(JVM Overhead + + + Metaspace 256 M 256M 256M + + + Flink Size 2000 M ) × 0.1 2000M) × 0.1 2000M)×0.1
    • Total Process Size = 2.448 G B = 2.448GB =2.448GB
    • JVM Overhead = 2.448 G B × 0.1 = 262843055 B = 250.667 M B = 2.448GB × 0.1 = 262843055B = 250.667MB =2.448GB×0.1=262843055B=250.667MB,在 192 M ~ 1 G B 192M~1GB 192M1GB,为有效
  • 最终确定 Total Process Size = 2.448 G B = 2.448GB =2.448GB && JVM Overhead = 250.667 M B = 250.667MB =250.667MB

在这里插入图片描述

这篇关于【大数据】Flink 内存管理(二):JobManager 内存分配(含实际计算案例)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/745846

相关文章

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

C++高效内存池实现减少动态分配开销的解决方案

《C++高效内存池实现减少动态分配开销的解决方案》C++动态内存分配存在系统调用开销、碎片化和锁竞争等性能问题,内存池通过预分配、分块管理和缓存复用解决这些问题,下面就来了解一下... 目录一、C++内存分配的性能挑战二、内存池技术的核心原理三、主流内存池实现:TCMalloc与Jemalloc1. TCM

Python并行处理实战之如何使用ProcessPoolExecutor加速计算

《Python并行处理实战之如何使用ProcessPoolExecutor加速计算》Python提供了多种并行处理的方式,其中concurrent.futures模块的ProcessPoolExecu... 目录简介完整代码示例代码解释1. 导入必要的模块2. 定义处理函数3. 主函数4. 生成数字列表5.

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

使用jenv工具管理多个JDK版本的方法步骤

《使用jenv工具管理多个JDK版本的方法步骤》jenv是一个开源的Java环境管理工具,旨在帮助开发者在同一台机器上轻松管理和切换多个Java版本,:本文主要介绍使用jenv工具管理多个JD... 目录一、jenv到底是干啥的?二、jenv的核心功能(一)管理多个Java版本(二)支持插件扩展(三)环境隔

六个案例搞懂mysql间隙锁

《六个案例搞懂mysql间隙锁》MySQL中的间隙是指索引中两个索引键之间的空间,间隙锁用于防止范围查询期间的幻读,本文主要介绍了六个案例搞懂mysql间隙锁,具有一定的参考价值,感兴趣的可以了解一下... 目录概念解释间隙锁详解间隙锁触发条件间隙锁加锁规则案例演示案例一:唯一索引等值锁定存在的数据案例二:

使用SpringBoot整合Sharding Sphere实现数据脱敏的示例

《使用SpringBoot整合ShardingSphere实现数据脱敏的示例》ApacheShardingSphere数据脱敏模块,通过SQL拦截与改写实现敏感信息加密存储,解决手动处理繁琐及系统改... 目录痛点一:痛点二:脱敏配置Quick Start——Spring 显示配置:1.引入依赖2.创建脱敏

Redis过期删除机制与内存淘汰策略的解析指南

《Redis过期删除机制与内存淘汰策略的解析指南》在使用Redis构建缓存系统时,很多开发者只设置了EXPIRE但却忽略了背后Redis的过期删除机制与内存淘汰策略,下面小编就来和大家详细介绍一下... 目录1、简述2、Redis http://www.chinasem.cn的过期删除策略(Key Expir

SpringBoot整合Apache Flink的详细指南

《SpringBoot整合ApacheFlink的详细指南》这篇文章主要为大家详细介绍了SpringBoot整合ApacheFlink的详细过程,涵盖环境准备,依赖配置,代码实现及运行步骤,感兴趣的... 目录1. 背景与目标2. 环境准备2.1 开发工具2.2 技术版本3. 创建 Spring Boot

Spring Boot 整合 Apache Flink 的详细过程

《SpringBoot整合ApacheFlink的详细过程》ApacheFlink是一个高性能的分布式流处理框架,而SpringBoot提供了快速构建企业级应用的能力,下面给大家介绍Spri... 目录Spring Boot 整合 Apache Flink 教程一、背景与目标二、环境准备三、创建项目 & 添