【卡码网】0-1背包问题 46. 携带研究材料——代码随想录算法训练营Day41

本文主要是介绍【卡码网】0-1背包问题 46. 携带研究材料——代码随想录算法训练营Day41,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

题目链接:46. 携带研究材料

题目描述

时间限制:5.000S  空间限制:128MB

题目描述

小明是一位科学家,他需要参加一场重要的国际科学大会,以展示自己的最新研究成果。他需要带一些研究材料,但是他的行李箱空间有限。这些研究材料包括实验设备、文献资料和实验样本等等,它们各自占据不同的空间,并且具有不同的价值。 

小明的行李空间为 N,问小明应该如何抉择,才能携带最大价值的研究材料,每种研究材料只能选择一次,并且只有选与不选两种选择,不能进行切割。

输入描述

第一行包含两个正整数,第一个整数 M 代表研究材料的种类,第二个正整数 N,代表小明的行李空间。

第二行包含 M 个正整数,代表每种研究材料的所占空间。 

第三行包含 M 个正整数,代表每种研究材料的价值。

输出描述

输出一个整数,代表小明能够携带的研究材料的最大价值。

输入示例
6 1
2 2 3 1 5 2
2 3 1 5 4 3
输出示例
5
提示信息

小明能够携带 6 种研究材料,但是行李空间只有 1,而占用空间为 1 的研究材料价值为 5,所以最终答案输出 5。 

数据范围:
1 <= N <= 5000
1 <= M <= 5000
研究材料占用空间和价值都小于等于 1000

文章讲解:代码随想录

视频讲解:带你学透0-1背包问题!| 关于背包问题,你不清楚的地方,这里都讲了!| 动态规划经典问题 | 数据结构与算法_哔哩哔哩_bilibili

题解1:回溯法

思路:使用回溯法暴力遍历所有物品是否放入的所有情况,找出最大价值。

const readline = require('readline');
const rl = readline.createInterface({input: process.stdin,output: process.stdout
});const num = 3;
const inputs = [];rl.on("line", (row) => {inputs.push(row);if (inputs.length < num) {return;}const firstRow = inputs[0].split(' ');const n = parseInt(firstRow[0]);const w = parseInt(firstRow[1]);const space = inputs[1].split(" ").map(s => parseInt(s));const value = inputs[2].split(" ").map(s => parseInt(s));let res = 0;const path = [];const backtracking = function (start, totalSpace, totalValue) {if (totalValue > res) {res = totalValue;}for (let i = start; i < n; i++) {// 可以将下标为 i 的物品放入背包if (totalSpace + space[i] <= w) {path.push(i);backtracking(i + 1, totalSpace + space[i], totalValue + value[i]);path.pop();}}};backtracking(0, 0, 0);console.log(res);
});

分析:令 n 为物品数量,时间复杂度为 O(2 ^ n),空间复杂度为 O(logn)。这个解法时间复杂度过高,为指数级,不推荐使用。

题解2:动态规划

思路:最经典解01背包问题的方法是动态规划法。

注意:此题为 ACM 模式,需要自己在代码中读取输入,打印输出。

动态规划分析:

  • dp 数组以及下标的含义:dp[i][j] 表示从下标为0到 i 的物品里任意取,放进容量为 j 的背包,价值总和最大是多少。
  • 递推公式:dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - weight[i]] + value[i])。
  • dp 数组初始化:dp[i][j] 的状态依赖于正上方和左上方的状态,因此需要初始化第0行和第0列,即 dp[0, j] 和 dp[i, 0]。dp[i, 0] 表示从下标为0到 i 的物品里任意取,放进容量为 j 的背包,价值总和最大自然是0。dp[0, j] 表示取或者不取下标为0的物品,放进容量为 j 的背包,j 小于 weight[0] 时,价值总和最大为0,大于等于 weight[0] 时为 value[0]。
  • 遍历顺序:dp[i][j] 的状态依赖于正上方和左上方的状态,因此在填充 dp[i][j] 时,它的正上方和上一行的左上方需要填充。先遍历物品再遍历背包和先遍历背包再遍历物品这两种方式都可以。
  • 打印 dp 数组:以如下输入为例

5 6
1 2 3 4 5
2 4 4 5 6

dp 数组为 [ [ 0, 2, 2, 2, 2, 2, 2 ], [ 0, 2, 4, 6, 6, 6, 6 ], [0, 2,  4, 6, 6, 8, 10 ], [ 0, 2,  4, 6, 6, 8, 10 ], [ 0, 2,  4, 6, 6, 8, 10 ] ]。

const readline = require('readline');
const rl = readline.createInterface({input: process.stdin,output: process.stdout
});const num = 3;
const inputs = [];rl.on("line", (row) => {inputs.push(row);if (inputs.length < num) {return;}const firstRow = inputs[0].split(' ');const n = parseInt(firstRow[0]);const w = parseInt(firstRow[1]);const space = inputs[1].split(" ").map(s => parseInt(s));const value = inputs[2].split(" ").map(s => parseInt(s));// 定义 dp 数组const dp = new Array(n).fill().map(() => new Array(w + 1).fill(0));// 初始化 dp 数组for (let j = 0; j < w + 1; j++) {if (j >= space[0]) {dp[0][j] = value[0];}}// 先遍历物品,再遍历背包for (let i = 1; i < n; i++) {for (let j = 1; j < w + 1; j++) {if (j < space[i]) {dp[i][j] = dp[i - 1][j];} else {dp[i][j] = Math.max(dp[i - 1][j], dp[i - 1][j - space[i]] + value[i]);}}}console.log(dp[n - 1][w]);
});

分析:令物品数量为 n,背包最大容量为 w,则时间复杂度为 O(n * w),空间复杂度为 O(n * w)。

题解3:动态规划优化

思路:dp[i][j] 依赖于上一行正上方及左上方的状态,与同一行后面的状态无关。可以想到填充某一行时,将上一行内容覆盖到这一行,然后从后向前填充,这样 dp[j] 的状态只依赖于前面的状态。

动态规划分析:

  • dp 数组以及下标的含义:dp[j]表示容量为j的背包,所背的物品价值可以最大为dp[j]。
  • 递推公式:dp[j] = Math.max(dp[j], dp[j - weight[i]] + value[i])。
  • dp 数组初始化:dp[0] 为0,j 大于0时 dp[j] 依赖于上一轮的 dp[j] 和前面的状态,为了取最大值后结果正确,应该初始化为0。即全部初始化为0。
  • 遍历顺序:先从前往后遍历物品,再从后往前遍历背包。
  • 打印 dp 数组:以如下输入为例

5 6
1 2 3 4 5
2 4 4 5 6

每一层的 dp 数组为

[0, 2, 2, 2, 2, 2, 2]
[0, 2, 4, 6, 6, 6, 6]
[0, 2,  4, 6, 6, 8, 10]
[0, 2,  4, 6, 6, 8, 10]
[0, 2,  4, 6, 6, 8, 10]

可以看到,将每一层的 dp 数组结合起来,和二维 dp 数组相同。

const readline = require('readline');
const rl = readline.createInterface({input: process.stdin,output: process.stdout
});const num = 3;
const inputs = [];rl.on("line", (row) => {inputs.push(row);if (inputs.length < num) {return;}const firstRow = inputs[0].split(' ');const n = parseInt(firstRow[0]);const w = parseInt(firstRow[1]);const space = inputs[1].split(" ").map(s => parseInt(s));const value = inputs[2].split(" ").map(s => parseInt(s));// 定义 dp 数组const dp = new Array(w + 1).fill(0);// 先遍历物品,再遍历背包for (let i = 0; i < n; i++) {// 倒序遍历背包for (let j = w; j >= space[i]; j--) {dp[j] = Math.max(dp[j], dp[j - space[i]] + value[i]);}}console.log(dp[w]);
});

分析:令物品数量为 n,背包最大容量为 w,则时间复杂度为 O(n * w),空间复杂度为 O(w)。

收获

学习01背包问题的动态规划解法。

这篇关于【卡码网】0-1背包问题 46. 携带研究材料——代码随想录算法训练营Day41的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/744514

相关文章

怎样通过分析GC日志来定位Java进程的内存问题

《怎样通过分析GC日志来定位Java进程的内存问题》:本文主要介绍怎样通过分析GC日志来定位Java进程的内存问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、GC 日志基础配置1. 启用详细 GC 日志2. 不同收集器的日志格式二、关键指标与分析维度1.

Java 线程安全与 volatile与单例模式问题及解决方案

《Java线程安全与volatile与单例模式问题及解决方案》文章主要讲解线程安全问题的五个成因(调度随机、变量修改、非原子操作、内存可见性、指令重排序)及解决方案,强调使用volatile关键字... 目录什么是线程安全线程安全问题的产生与解决方案线程的调度是随机的多个线程对同一个变量进行修改线程的修改操

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

Redis出现中文乱码的问题及解决

《Redis出现中文乱码的问题及解决》:本文主要介绍Redis出现中文乱码的问题及解决,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1. 问题的产生2China编程. 问题的解决redihttp://www.chinasem.cns数据进制问题的解决中文乱码问题解决总结

Java中调用数据库存储过程的示例代码

《Java中调用数据库存储过程的示例代码》本文介绍Java通过JDBC调用数据库存储过程的方法,涵盖参数类型、执行步骤及数据库差异,需注意异常处理与资源管理,以优化性能并实现复杂业务逻辑,感兴趣的朋友... 目录一、存储过程概述二、Java调用存储过程的基本javascript步骤三、Java调用存储过程示

Visual Studio 2022 编译C++20代码的图文步骤

《VisualStudio2022编译C++20代码的图文步骤》在VisualStudio中启用C++20import功能,需设置语言标准为ISOC++20,开启扫描源查找模块依赖及实验性标... 默认创建Visual Studio桌面控制台项目代码包含C++20的import方法。右键项目的属性:

全面解析MySQL索引长度限制问题与解决方案

《全面解析MySQL索引长度限制问题与解决方案》MySQL对索引长度设限是为了保持高效的数据检索性能,这个限制不是MySQL的缺陷,而是数据库设计中的权衡结果,下面我们就来看看如何解决这一问题吧... 目录引言:为什么会有索引键长度问题?一、问题根源深度解析mysql索引长度限制原理实际场景示例二、五大解决

Springboot如何正确使用AOP问题

《Springboot如何正确使用AOP问题》:本文主要介绍Springboot如何正确使用AOP问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录​一、AOP概念二、切点表达式​execution表达式案例三、AOP通知四、springboot中使用AOP导出

MySQL数据库的内嵌函数和联合查询实例代码

《MySQL数据库的内嵌函数和联合查询实例代码》联合查询是一种将多个查询结果组合在一起的方法,通常使用UNION、UNIONALL、INTERSECT和EXCEPT关键字,下面:本文主要介绍MyS... 目录一.数据库的内嵌函数1.1聚合函数COUNT([DISTINCT] expr)SUM([DISTIN

Python中Tensorflow无法调用GPU问题的解决方法

《Python中Tensorflow无法调用GPU问题的解决方法》文章详解如何解决TensorFlow在Windows无法识别GPU的问题,需降级至2.10版本,安装匹配CUDA11.2和cuDNN... 当用以下代码查看GPU数量时,gpuspython返回的是一个空列表,说明tensorflow没有找到