切比雪夫(最小区域法)圆拟合算法

2024-02-23 21:04

本文主要是介绍切比雪夫(最小区域法)圆拟合算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

欢迎关注更多精彩
关注我,学习常用算法与数据结构,一题多解,降维打击。

本期话题:切比雪夫(最小区域法)直线拟合算法

相关背景和理论
点击前往
主要介绍了应用背景和如何转化成线性规划问题

在这里插入图片描述

圆拟合输入和输出要求

输入

  1. 10到631个点,全部采样自2D圆附近。
  2. 每个点3个坐标,坐标精确到小数点后面20位,最后1个坐标为0。
  3. 坐标单位是mm, 范围[-500mm, 500mm]。

输出

  1. 圆心1点C,用三个坐标表示。
  2. 半径r。
  3. 圆度F,所有点到圆距离最大的2倍。

F的最小区域法理解
在这里插入图片描述

黑色为点云。

对于圆来讲,最小区域是指用两个同心圆夹住点云,使得圆之间的半径之差最小。这个最小值就是F。拟合结果就是两圆中间的圆(橙色圆)。

精度要求

  1. C点到标准圆心距离不能超过0.0001mm。
  2. r与标准半径的差不能超过0.0001mm。
  3. F与标准圆度误差不能超过0.00001mm。

圆优化标函数

根据认证要求,圆拟合转化成数学表示如下:

圆参数化表示

  1. 圆心C = (x0, y0,0)。
  2. 半径r。

圆方程 ( x − x 0 ) 2 + ( y − y 0 ) 2 = r 2 圆方程 (x-x_0)^2+(y-y_0)^2=r^2 圆方程(xx0)2+(yy0)2=r2

点到圆距离

第i个点 pi(xi, yi, 0)。

根据定义得到距离

d i = ∥ ( p i − X 0 ) ∥ − r d_i =\left \| (p_i-X_0) \right \|-r di=(piX0)r

展开一下:

d i = r i − r d_i = r_i -r di=rir

r i = ( x i − x 0 ) 2 + ( y i − y 0 ) 2 r_i = \sqrt{(x_i-x_0)^2 + (y_i-y_0)^2} ri=(xix0)2+(yiy0)2

优化能量方程

能量方程 H = f ( X 0 , r ) = max ⁡ 1 n ∣ d i ∣ H=f(X0, r)=\displaystyle \max_1^n {|d_i|} H=f(X0,r)=1maxndi

上式是一个4元二次函数中,X0, r是未知量,拟合2D圆的过程也可以理解为优化X0, r使得方程E最小。

可以对上述方程求导,使得导数等于0取得最值。但是求导后会变成一个比较复杂的方程组,不好解。可以使用高斯牛顿迭代法来求解。

转化为线性规划

设 a = ( x 0 , y 0 , r ) , d i = F ( x i ; a ) , 引入 Γ = M A X i = 1 n ∣ d i ∣ 设a=(x_0, y_0, r), d_i=F(x_i;\ a), 引入\Gamma=\overset n{\underset {i=1}{MAX}}\;|d_i| a=(x0,y0,r),di=F(xi; a),引入Γi=1MAXndi

根据上述定义,可以将原来的最值问题转化为下述条件

对于所有点应该满足

F ( x i ; a ) ≤ Γ , ( F ( x i ; a ) > 0 ) F(x_i;\ a)\le \Gamma, (F(x_i;\ a)>0) F(xi; a)Γ,(F(xi; a)>0)

− F ( x i ; a ) ≤ Γ , ( F ( x i ; a ) < 0 ) -F(x_i;\ a)\le \Gamma, (F(x_i;\ a)<0) F(xi; a)Γ,(F(xi; a)<0)

我们可以通过小量迭代慢慢减小Γ

m a x Δ Γ s . t . F ( x i , a ) + J Δ a ≤ Γ − Δ Γ , ( i = 1 , 2... n ) − ( F ( x i , a ) + J Δ a ) ≤ Γ − Δ Γ , ( i = 1 , 2... n ) Δ Γ ≥ 0 \begin {array}{c}max \ \ \ \ \Delta {\Gamma}\\ s.t.\ \ \ F(x_i, a) + J\Delta a \le \Gamma -\Delta \Gamma, (i=1,2...n)\\ \ \ \ \ \ \ \ \ \ -(F(x_i, a) + J\Delta a) \le \Gamma -\Delta \Gamma, (i=1,2...n)\\ \Delta \Gamma \ge0\end{array} max    ΔΓs.t.   F(xi,a)+JΔaΓΔΓ,(i=1,2...n)         (F(xi,a)+JΔa)ΓΔΓ,(i=1,2...n)ΔΓ0

上述条件不需要管 F ( x i , a ) + J Δ a 正负情况,若 F ( x i , a ) + J Δ a 为正 − ( F ( x i , a ) + J Δ a ) ≤ Γ − Δ Γ 必成立,反之亦然。 上述条件不需要管F(x_i, a) + J\Delta a正负情况,若F(x_i, a) + J\Delta a为正-(F(x_i, a) + J\Delta a) \le \Gamma -\Delta \Gamma必成立,反之亦然。 上述条件不需要管F(xi,a)+JΔa正负情况,若F(xi,a)+JΔa为正(F(xi,a)+JΔa)ΓΔΓ必成立,反之亦然。
求解出以后更新a, Γ。

对线性规划模型标准化

需要对 Δ x 0 , Δ y 0 , Δ r 拆解,要求变量都要大于等于 0 需要对\Delta x_0, \Delta y_0, \Delta r 拆解,要求变量都要大于等于0 需要对Δx0,Δy0,Δr拆解,要求变量都要大于等于0

m a x Δ Γ s . t . J i ⋅ [ Δ x 0 + - Δ x 0 - Δ y 0 + - Δ y 0 - Δ r + − Δ r − ] + Δ Γ ≤ Γ - d i , ( i = 1 , 2... n ) − J i ⋅ [ Δ x 0 + - Δ x 0 - Δ y 0 + - Δ y 0 - Δ r + − Δ r − ] + Δ Γ ≤ Γ + d i , ( i = 1 , 2... n ) Δ x 0 + , Δ x 0 − , Δ y 0 + , Δ y 0 − , Δ r , Δ Γ ≥ 0 ( 1 ) \begin {array}{c}max \ \ \ \ \Delta {\Gamma}\\ s.t.\ \ \ J_i \cdot \begin {bmatrix} \Delta x_0^+-\Delta x_0^-\\ \Delta y_0^+-\Delta y_0^-\\ \Delta r^+- \Delta r^- \end{bmatrix} +\Delta \Gamma\le \Gamma-d_i, (i=1,2...n)\\\\ \ \ \ \ \ \ -J_i \cdot \begin {bmatrix} \Delta x_0^+-\Delta x_0^-\\ \Delta y_0^+-\Delta y_0^-\\ \Delta r^+- \Delta r^- \end{bmatrix}+\Delta \Gamma\le \Gamma+d_i, (i=1,2...n)\\ \Delta x_0^+, \Delta x_0^-, \Delta y_0^+, \Delta y_0^-, \Delta r, \Delta \Gamma \ge0\end{array} (1) max    ΔΓs.t.   Ji Δx0+Δx0Δy0+Δy0Δr+Δr +ΔΓΓdi,(i=1,2...n)      Ji Δx0+Δx0Δy0+Δy0Δr+Δr +ΔΓΓ+di,(i=1,2...n)Δx0+,Δx0,Δy0+,Δy0,Δr,ΔΓ0(1)

算法描述

回顾一下

d i = r i − r d_i = r_i -r di=rir

r i = ( x i − x 0 ) 2 + ( y i − y 0 ) 2 r_i = \sqrt{(x_i-x_0)^2 + (y_i-y_0)^2} ri=(xix0)2+(yiy0)2

J, D的计算。

3个未知分别对d_i求导结果如下:

∂ d i ∂ x 0 = 1 2 ( x i − x 0 ) 2 + ( y i − y 0 ) 2 ⋅ ( x i − x 0 ) ⋅ − 1 = − ( x i − x 0 ) / r i \frac {\partial d_i} {\partial x_0}=\frac {1} {2 \sqrt{(x_i-x_0)^2 + (y_i-y_0)^2}}\cdot(x_i-x_0)\cdot -1 = -(x_i-x_0)/r_i x0di=2(xix0)2+(yiy0)2 1(xix0)1=(xix0)/ri

∂ d i ∂ y 0 = 1 2 ( x i − x 0 ) 2 + ( y i − y 0 ) 2 ⋅ ( y i − y 0 ) ⋅ − 1 = − ( y i − y 0 ) / r i \frac {\partial d_i} {\partial y_0}=\frac {1} {2 \sqrt{(x_i-x_0)^2 + (y_i-y_0)^2}}\cdot(y_i-y_0)\cdot -1 = -(y_i-y_0)/r_i y0di=2(xix0)2+(yiy0)2 1(yiy0)1=(yiy0)/ri

∂ d i ∂ r = − 1 \frac {\partial d_i} {\partial r}=-1 rdi=1

一次迭代过程

  1. 确定圆初值,Γ,使用高斯拟合点击前往

  2. 根据上述公式(1)构建线性规划方程

  3. 求解 Δ p \Delta p Δp

  4. 更新解
    x 0 = x 0 + p x 0 y 0 = y 0 + p y 0 r = r + p r Γ = Γ − Δ Γ \begin {array}{c} x_0 = x_0+p_{x_0} \\y_0 = y_0+p_{y_0} \\ r=r+p_r \\ \Gamma = \Gamma-\Delta \Gamma \end {array} x0=x0+px0y0=y0+py0r=r+prΓ=ΓΔΓ

  5. 重复2直到收敛

最后,输出时F=2*Γ

代码实现

代码链接:https://gitcode.com/chenbb1989/3DAlgorithm/blob/master/CBB3DAlgorithm/Fitting/chebyshev/CircleFitter.cpp

拟合代码


namespace Chebyshev {double CircleFitter::F(Fitting::Circle2D circle, const Point& p){auto de = Eigen::Vector2d(p.x(), p.y()) - circle.center;return de.norm() - circle.r;}double CircleFitter::GetError(Fitting::Circle2D circle, const std::vector<Eigen::Vector3d>& points){double err = 0;for (auto& p : points) {err = std::max(err, abs(F(circle, p)));}return err;}Fitting::Matrix CircleFitter::Jacobi(const std::vector<Eigen::Vector3d>& points){Fitting::Matrix J(points.size(), 3);for (int i = 0; i < points.size(); ++i) {Eigen::Vector2d p = { points[i].x() - circle.center.x(),points[i].y() - circle.center.y() };J(i, 0) = -p.x() / p.norm();J(i, 1) = -p.y() / p.norm();J(i, 2) = -1;}return J;}void CircleFitter::beforHook(const std::vector<Eigen::Vector3d>& points){}void CircleFitter::afterHook(const Eigen::VectorXd& xp){circle.center += Eigen::Vector2d(xp(0), xp(1));circle.r += xp(2);gamma -= xp(3);}Eigen::VectorXd CircleFitter::getDArray(const std::vector<Eigen::Vector3d>& points){Eigen::VectorXd D(points.size());for (int i = 0; i < points.size(); ++i)D(i) = F(circle, points[i]);return D;}bool CircleFitter::GetInitFit(const std::vector<Eigen::Vector3d>& points){if (points.size() < 3)return false;Fitting::FittingBase* fb = new Gauss::FittingCircle2D();fb->Fitting(points, &circle);delete fb;gamma = GetError(circle, points);return true;}double CircleFitter::F(const Eigen::Vector3d& p){return Chebyshev::CircleFitter::F(circle, p);}double CircleFitter::GetError(const std::vector<Eigen::Vector3d>& points){return Chebyshev::CircleFitter::GetError(circle, points);}void CircleFitter::Copy(void* ele){memcpy(ele, &circle, sizeof(Fitting::Circle2D));}CircleFitter::CircleFitter(){ft = Fitting::FittingType::CHEBYSHEV;}
}

测试结果

https://gitcode.com/chenbb1989/3DAlgorithm/blob/master/CBB3DAlgorithm/Fitting/chebyshev/chebyshev-testdata/officialtest/fitting_result/result.txt
C09 : CIRCLE_2D : pass
C10 : CIRCLE_2D : pass
C11 : CIRCLE_2D : pass
C12 : CIRCLE_2D : pass
C13 : CIRCLE_2D : pass
C14 : CIRCLE_2D : pass
C15 : CIRCLE_2D : pass
C16 : CIRCLE_2D : pass

本人码农,希望通过自己的分享,让大家更容易学懂计算机知识。创作不易,帮忙点击公众号的链接。

这篇关于切比雪夫(最小区域法)圆拟合算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/739919

相关文章

Java内存区域与内存溢出异常的详细探讨

《Java内存区域与内存溢出异常的详细探讨》:本文主要介绍Java内存区域与内存溢出异常的相关资料,分析异常原因并提供解决策略,如参数调整、代码优化等,帮助开发者排查内存问题,需要的朋友可以参考下... 目录一、引言二、Java 运行时数据区域(一)程序计数器(二)Java 虚拟机栈(三)本地方法栈(四)J

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

如何通过Golang的container/list实现LRU缓存算法

《如何通过Golang的container/list实现LRU缓存算法》文章介绍了Go语言中container/list包实现的双向链表,并探讨了如何使用链表实现LRU缓存,LRU缓存通过维护一个双向... 目录力扣:146. LRU 缓存主要结构 List 和 Element常用方法1. 初始化链表2.

golang字符串匹配算法解读

《golang字符串匹配算法解读》文章介绍了字符串匹配算法的原理,特别是Knuth-Morris-Pratt(KMP)算法,该算法通过构建模式串的前缀表来减少匹配时的不必要的字符比较,从而提高效率,在... 目录简介KMP实现代码总结简介字符串匹配算法主要用于在一个较长的文本串中查找一个较短的字符串(称为

通俗易懂的Java常见限流算法具体实现

《通俗易懂的Java常见限流算法具体实现》:本文主要介绍Java常见限流算法具体实现的相关资料,包括漏桶算法、令牌桶算法、Nginx限流和Redis+Lua限流的实现原理和具体步骤,并比较了它们的... 目录一、漏桶算法1.漏桶算法的思想和原理2.具体实现二、令牌桶算法1.令牌桶算法流程:2.具体实现2.1