LLMChain使用 | RouterChain的使用 - 用本地大模型搭建多Agents

2024-02-23 00:20

本文主要是介绍LLMChain使用 | RouterChain的使用 - 用本地大模型搭建多Agents,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

单个本地大模型搭建参考博客

  • 单个Chain:面对一个需求,我们需要创建一个llmchain,设置一个prompt模板,这个chain能够接收一个用户input,并输出一个结果;
  • 多个Chain:考虑到同时面对多个需求,我们需要设置多个Chain。
    Router Chain往往会配合下游的destination chain一起使用,成为“一个网关路由+多个下子链”的架构,实现根据用户输入,自动路由到最相关的下游chain
    在这里插入图片描述

下图中是一个RouterChian使用场景的示意图,我们可以看到,一个RouterChain连接了多个下游的子链,每个链都是一个小应用,当RouterChain接收用户的输入,其可以根据用户输入路由到和输入最相关的子链上,并由子链产生输出;

例如,用户输入是“请帮我写一首诗”,当RouterChain接收后,会自动路由到“诗人”这个子链,由它来输出结果。

在这里插入图片描述

2.RouterChain构成

根据Langchain的介绍,标准的RouterChain应用应包含两个标准组成部分:

  1. 路由链RouterChain:其本身就是一个chain应用,能够根据用户输入进行下游子链的选择;Langchain框架提供了多种RouterChain,其中着重介绍了LLMRouterChainEmbeddingRouterChain两种:
    • LLMRouterChain 将用户输入放进大语言模型,通过Prompt的形式让大语言模型来进行路由
    • EmbeddingRouterChain 通过向量搜索的方式,将用户输入
  2. 子链DestinationChain:直译为目标链,即可路由到的链,按照上图,我们会存在4个目标链,分别是lawyer chain,sales chain,english teacher chain 和 poet chain

3.MultiPromptChain构成

MultiPromptChain应用应包含两个标准组成部分

  • router_chain:接收一个RouterChain实例,作为路由链进行路由
    default_chain:接收一个LLMChain实例,当Router Chain无法找到合适的下游子链时,会自动路由到的默认链,可以认为是一个兜底备选链
  • destination_chains:接收一个Mapping[str, LLMChain] 字典,key为可以路由到的destination chain的名称,value为该destination chain的LLMChain实例

此外,还有其他主要的可选参数:

  • memory: 接收一个BaseMemory实例,能为路由链添加上下文记忆
  • verbose: bool值,若为True则会打印该链的调用过程

4.代码示例

下面我们以“园丁” 和 “插花大师”为例,子链DestinationChain分别是 园丁的chain插花大师的chain

《代码流程》
1.【Step1】初始化语言模型("qwen:7b")
2.【Step2】构建提示信息(json格式),包括:key、description 和 template
- 【Step2.1】构建两个场景的模板
- 【Step2.2】构建提示信息
3.【Step3】构建目标链chain_map(json格式),以提示信息prompt_infos中的key为key,以Chain为value
4.【Step4】构建路由链router_chain
5.【Step5】构建默认链 default_chain 
6.【Step6】构建多提示链 MultiPromptChain
from langchain.chains.llm import LLMChain
from langchain.prompts import PromptTemplate
from langchain.chains.router.llm_router import LLMRouterChain, RouterOutputParser
from langchain.chains.router.multi_prompt_prompt import MULTI_PROMPT_ROUTER_TEMPLATE as RounterTemplate## 【Step1】初始化语言模型
# from langchain.llms import OpenAI
# llm = OpenAI()
# llm = AzureChatOpenAI(deployment_name="GPT-4", temperature=0)ollama_llm = Ollama(model="qwen:7b")## 【Step2】构建提示信息(json格式),包括:key、description 和 template
# 【Step2.1】构建两个场景的模板
flower_care_template = """
你是一个经验丰富的园丁,擅长解答关于养花育花的问题。
下面是需要你来回答的问题:
{input}
"""flower_deco_template = """
你是一位网红插花大师,擅长解答关于鲜花装饰的问题。
下面是需要你来回答的问题:
{input}
"""# 【Step2.2】构建提示信息
prompt_infos = [{"key": "flower_care","description": "适合回答关于鲜花护理的问题","template": flower_care_template,},{"key": "flower_decoration","description": "适合回答关于鲜花装饰的问题","template": flower_deco_template,}
]## 【Step3】构建目标链chain_map(json格式),以提示信息prompt_infos中的key为key,以Chain为value
chain_map = {}for info in prompt_infos:prompt = PromptTemplate(template=info['template'],input_variables=["input"])print("目标提示:\n", prompt)chain = LLMChain(llm=ollama_llm,prompt=prompt,verbose=True)chain_map[info["key"]] = chain## 【Step4】构建路由链router_chain
destinations = [f"{p['key']}: {p['description']}" for p in prompt_infos]
router_template = RounterTemplate.format(destinations="\n".join(destinations))
print("路由模板:\n", router_template)router_prompt = PromptTemplate(template=router_template,input_variables=["input"],output_parser=RouterOutputParser(),
)
print("路由提示:\n", router_prompt)router_chain = LLMRouterChain.from_llm(ollama_llm,router_prompt,verbose=True
)## 【Step5】构建默认链 default_chain 
from langchain.chains import ConversationChain
default_chain = ConversationChain(llm=ollama_llm,output_key="text",verbose=True
)## 【Step6】构建多提示链 MultiPromptChain
from langchain.chains.router import MultiPromptChainchain = MultiPromptChain(router_chain=router_chain,destination_chains=chain_map,default_chain=default_chain,verbose=True
)# 测试1
print(chain.run("如何为玫瑰浇水?"))

【参考链接】

  1. 【LangChain系列 31】Chains——基础链:LLMChain和RouterChain
  2. Langchain Chain - RouterChain 根据输入相关性进行路由的路由链
  3. 精华笔记:吴恩达 x LangChain《基于LangChain的大语言模型应用开发》(上)

这篇关于LLMChain使用 | RouterChain的使用 - 用本地大模型搭建多Agents的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/736975

相关文章

使用Docker构建Python Flask程序的详细教程

《使用Docker构建PythonFlask程序的详细教程》在当今的软件开发领域,容器化技术正变得越来越流行,而Docker无疑是其中的佼佼者,本文我们就来聊聊如何使用Docker构建一个简单的Py... 目录引言一、准备工作二、创建 Flask 应用程序三、创建 dockerfile四、构建 Docker

Python使用vllm处理多模态数据的预处理技巧

《Python使用vllm处理多模态数据的预处理技巧》本文深入探讨了在Python环境下使用vLLM处理多模态数据的预处理技巧,我们将从基础概念出发,详细讲解文本、图像、音频等多模态数据的预处理方法,... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

Conda与Python venv虚拟环境的区别与使用方法详解

《Conda与Pythonvenv虚拟环境的区别与使用方法详解》随着Python社区的成长,虚拟环境的概念和技术也在不断发展,:本文主要介绍Conda与Pythonvenv虚拟环境的区别与使用... 目录前言一、Conda 与 python venv 的核心区别1. Conda 的特点2. Python v

Spring Boot中WebSocket常用使用方法详解

《SpringBoot中WebSocket常用使用方法详解》本文从WebSocket的基础概念出发,详细介绍了SpringBoot集成WebSocket的步骤,并重点讲解了常用的使用方法,包括简单消... 目录一、WebSocket基础概念1.1 什么是WebSocket1.2 WebSocket与HTTP

C#中Guid类使用小结

《C#中Guid类使用小结》本文主要介绍了C#中Guid类用于生成和操作128位的唯一标识符,用于数据库主键及分布式系统,支持通过NewGuid、Parse等方法生成,感兴趣的可以了解一下... 目录前言一、什么是 Guid二、生成 Guid1. 使用 Guid.NewGuid() 方法2. 从字符串创建

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

Spring IoC 容器的使用详解(最新整理)

《SpringIoC容器的使用详解(最新整理)》文章介绍了Spring框架中的应用分层思想与IoC容器原理,通过分层解耦业务逻辑、数据访问等模块,IoC容器利用@Component注解管理Bean... 目录1. 应用分层2. IoC 的介绍3. IoC 容器的使用3.1. bean 的存储3.2. 方法注

Python内置函数之classmethod函数使用详解

《Python内置函数之classmethod函数使用详解》:本文主要介绍Python内置函数之classmethod函数使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地... 目录1. 类方法定义与基本语法2. 类方法 vs 实例方法 vs 静态方法3. 核心特性与用法(1编程客