内存计算研究进展-针对机器学习的近数据计算架构

2024-02-21 06:36

本文主要是介绍内存计算研究进展-针对机器学习的近数据计算架构,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

    针对机器学习的近数据计算架构代表性工作有: Georgia Institute of Technology的BSSync (bounded staled sync) 和 Neurocube,Advanced Micro Devices 的 CoML,具体如下。

1 BSSync

    BSSync指出,在并行实现的机器学习应用中,原子操作用来保障无锁状态下算法的收敛,但带来很大的同步开销,且同步产生的通信延迟不与占比大的计算延迟重叠。BSSync发现,在机器学习应用迭代收敛过程中,可以用未更新的中间数据进行计算,从而提出利用基于近数据计算的有边界一致性模型减少原子操作带来的延迟开销。图17是 BSSync系统结构,CPU 核里面增加了原子请求队列、控制寄存器以及区域表来实现边界一致性模型.实验显示,BSSync比机器学习应用在传统冯.诺依曼系统中的异步并行的实现快1.33倍。

2 Neurocube

    Neurocube是一个针对神经网络计算设计的可编程、可扩展,且节能的近数据计算系统架构。图18 是 Neurocube架构,左边是普遍使用的NDC cube结构,右边是逻辑层设计。逻辑层采用了细粒度可编程的设计模型,以灵活支持祌经网络计算.其中,每 个 P E 有 多 个 M AC单元支持神经网络中最常用的乘加操作,同时还有存储权值的寄存器和缓存以及相应的计数器。

    图19 是 Neurocube的执行流程.它首先将神经网络存储到NDC cube的存储单元中,包括每层数据、神经元状态、连接权值.当一个层处理好之后,与中央处理器交互一次,然后执行下一层。Neurocube通过对逻辑层硬件、数据映射方式、片上互联,以及编程方式的精心设计,使得祌经网络计算在NDC cube中能够高效执行。

    实验显示,相比于GPU系统,Neurocube有 4 倍的每瓦计算效率提升,与 ASIC系统相比,灵活性更好、扩展能力更强。

    不同于针对机器学习设计的注重优化乘加(MAC) 操作的近数据计算系统,C oM L lM 提出,虽然包含MAC操作的卷积层等计算占整个机器学习过程的比例大,但这些计算是计算密集型的,数据复用性好,计算/字节比率高(即一个字节从内存中读出来之后用来计算的次数多);事实上,机器学习过程中,约32%的时间用于数据密集型计算,这些计算的计算/字节比率低。图 2 0 展示了神经网络中低计算/字节比率的计算部分。CoM L 将这些低计算/字节比率的计算部分放在近数据计算端,把MAC等操作放在主处理器上做。

     实验显示,C oM L 在机器学习的数据密集型计算上的加速达到了 2 0 倍,总体有14%的性能提升。

参考文献

毛海宇,舒继武,李飞,等. 内存计算研究进展. 中国科学:信息科学,2021, 51: 173-206, doi: 10.1360/SSI-2020-0037 M ao H Y, Shu J W , Li F , et al. D evelopm ent of processing-in-m em ory (in C hinese). Sci Sin Inform , 2021, 51: 173-206, doi: 10.1360/SSI-2020-0037

这篇关于内存计算研究进展-针对机器学习的近数据计算架构的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/730863

相关文章

Linux下利用select实现串口数据读取过程

《Linux下利用select实现串口数据读取过程》文章介绍Linux中使用select、poll或epoll实现串口数据读取,通过I/O多路复用机制在数据到达时触发读取,避免持续轮询,示例代码展示设... 目录示例代码(使用select实现)代码解释总结在 linux 系统里,我们可以借助 select、

Spring Boot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)

《SpringBoot分层架构详解之从Controller到Service再到Mapper的完整流程(用户管理系统为例)》本文将以一个实际案例(用户管理系统)为例,详细解析SpringBoot中Co... 目录引言:为什么学习Spring Boot分层架构?第一部分:Spring Boot的整体架构1.1

Python内存管理机制之垃圾回收与引用计数操作全过程

《Python内存管理机制之垃圾回收与引用计数操作全过程》SQLAlchemy是Python中最流行的ORM(对象关系映射)框架之一,它提供了高效且灵活的数据库操作方式,本文将介绍如何使用SQLAlc... 目录安装核心概念连接数据库定义数据模型创建数据库表基本CRUD操作创建数据读取数据更新数据删除数据查

C#使用iText获取PDF的trailer数据的代码示例

《C#使用iText获取PDF的trailer数据的代码示例》开发程序debug的时候,看到了PDF有个trailer数据,挺有意思,于是考虑用代码把它读出来,那么就用到我们常用的iText框架了,所... 目录引言iText 核心概念C# 代码示例步骤 1: 确保已安装 iText步骤 2: C# 代码程

Pandas处理缺失数据的方式汇总

《Pandas处理缺失数据的方式汇总》许多教程中的数据与现实世界中的数据有很大不同,现实世界中的数据很少是干净且同质的,本文我们将讨论处理缺失数据的一些常规注意事项,了解Pandas如何表示缺失数据,... 目录缺失数据约定的权衡Pandas 中的缺失数据None 作为哨兵值NaN:缺失的数值数据Panda

C++中处理文本数据char与string的终极对比指南

《C++中处理文本数据char与string的终极对比指南》在C++编程中char和string是两种用于处理字符数据的类型,但它们在使用方式和功能上有显著的不同,:本文主要介绍C++中处理文本数... 目录1. 基本定义与本质2. 内存管理3. 操作与功能4. 性能特点5. 使用场景6. 相互转换核心区别

python库pydantic数据验证和设置管理库的用途

《python库pydantic数据验证和设置管理库的用途》pydantic是一个用于数据验证和设置管理的Python库,它主要利用Python类型注解来定义数据模型的结构和验证规则,本文给大家介绍p... 目录主要特点和用途:Field数值验证参数总结pydantic 是一个让你能够 confidentl

JAVA实现亿级千万级数据顺序导出的示例代码

《JAVA实现亿级千万级数据顺序导出的示例代码》本文主要介绍了JAVA实现亿级千万级数据顺序导出的示例代码,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面... 前提:主要考虑控制内存占用空间,避免出现同时导出,导致主程序OOM问题。实现思路:A.启用线程池

k8s容器放开锁内存限制问题

《k8s容器放开锁内存限制问题》nccl-test容器运行mpirun时因NCCL_BUFFSIZE过大导致OOM,需通过修改docker服务配置文件,将LimitMEMLOCK设为infinity并... 目录问题问题确认放开容器max locked memory限制总结参考:https://Access

SpringBoot分段处理List集合多线程批量插入数据方式

《SpringBoot分段处理List集合多线程批量插入数据方式》文章介绍如何处理大数据量List批量插入数据库的优化方案:通过拆分List并分配独立线程处理,结合Spring线程池与异步方法提升效率... 目录项目场景解决方案1.实体类2.Mapper3.spring容器注入线程池bejsan对象4.创建