OSQP文档学习

2024-02-20 14:12
文章标签 文档 学习 osqp

本文主要是介绍OSQP文档学习,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

OSQP官方文档

1 QSQP简介

OSQP求解形式为的凸二次规划:
在这里插入图片描述
x ∈ R n x∈R^n xRn:优化变量
P ∈ S + n P∈S^n_+ PS+n:半正定矩阵

特征
(1)高效:使用了一种自定义的基于ADMM的一阶方法,只需要在设置阶段进行单个矩阵分解。
(2)鲁棒:该算法设置之后不需要对问题数据进行假设(问题只需要是凸的)。
(3)原始/对偶不可行问题:当问题是原始或对偶不可行时,OSQP会检测到它。这是第一个基于一阶方法的QP求解器。
(4)可嵌入:有一个简单的接口来生成定制的可嵌入C代码,而不需要内存管理器。
(5)不需要外部库即可运行
(6)可以很容易地进行热启动,并且可以缓存矩阵分解,以非常有效地解决参数化问题
(7)接口:提供了到C、C++、Fortran、Julia、Matlab、Python、R、Ruby和Rust的接口

2 OSQP求解器

在这里插入图片描述
求解器运行以下ADMM算法:
在这里插入图片描述
Π \Pi Π:投影到超盒上 [ l , u ] [l,u] [l,u] ρ \rho ρ是ADMM步长
Linear system solution
线性系统解是算法的核心部分。它可以使用直接或间接的方法来完成。
使用直接线性系统求解器,我们求解以下具有拟定矩阵的线性系统:
在这里插入图片描述
使用间接线性系统求解器,我们求解以下具有正定矩阵的线性系统:
在这里插入图片描述
OSQP核心旨在支持不同的线性系统求解器。

Convergence
在每k次迭代时,OSQP生成一个元组 ( x k , z k , y k ) (x^k,z^k,y^k) (xk,zk,yk)
x k ∈ R n , z k 、 y k ∈ R m x^k∈R^n,z^k、y^k∈R^m xkRn,zkykRm
( x k , z k , y k ) (x^k,z^k,y^k) (xk,zk,yk)相关的原始残差和对偶残差:
在这里插入图片描述
在这里插入图片描述
#pic
不可行问题
OSQP能够检测问题是原始不可行还是对偶不可行。
在这里插入图片描述

3 Get started

安装:
Linux操作系统,默认gcc,cmake已经安装好
① 克隆存储库

git clone https://github.com/osqp/osqp

② 创建目录和更改目录build

cd osqp
mkdir build
cd build

③ 创建 Makefile

cmake -G "Unix Makefiles" ..

④ 编译 OSQP

cmake --build .

C语言:
在 CMake 项目中包括 OSQP,具体取决于您需要共享库还是静态库:

# Find OSQP library and headers
find_package(osqp REQUIRED)# Link the OSQP shared library
target_link_libraries(yourTarget PRIVATE osqp::osqp)# or...# Link the OSQP static library
target_link_libraries(yourTarget PRIVATE osqp::osqpstatic)

4 接口

OSQP有几个接口。以下链接中显示了有关设置、状态值以及如何指定不同线性系统解算器的信息
Solver settings
Linear Systems Solvers
Status values

在这里插入图片描述
在这里插入图片描述
C:github.com/osqp/osqp
C++:github.com/robotology/osqp-eigen

5 Examples

Demo:
① Setup and solve :设置和求解
在这里插入图片描述
C:

#include <stdlib.h>
#include "osqp.h"int main(int argc, char **argv) {/* Load problem data */OSQPFloat P_x[3] = {4.0, 1.0, 2.0, };OSQPInt P_nnz = 3;OSQPInt P_i[3] = {0, 0, 1, };OSQPInt P_p[3] = {0, 1, 3, };OSQPFloat q[2] = {1.0, 1.0, };OSQPFloat A_x[4] = {1.0, 1.0, 1.0, 1.0, };OSQPInt A_nnz = 4;OSQPInt A_i[4] = {0, 1, 0, 2, };OSQPInt A_p[3] = {0, 2, 4, };OSQPFloat l[3] = {1.0, 0.0, 0.0, };OSQPFloat u[3] = {1.0, 0.7, 0.7, };OSQPInt n = 2;OSQPInt m = 3;/* Exitflag */OSQPInt exitflag = 0;/* Solver, settings, matrices */OSQPSolver   *solver;OSQPSettings *settings;OSQPCscMatrix* P = malloc(sizeof(OSQPCscMatrix));OSQPCscMatrix* A = malloc(sizeof(OSQPCscMatrix));/* Populate matrices */csc_set_data(A, m, n, A_nnz, A_x, A_i, A_p);csc_set_data(P, n, n, P_nnz, P_x, P_i, P_p);/* Set default settings */settings = (OSQPSettings *)malloc(sizeof(OSQPSettings));if (settings) {osqp_set_default_settings(settings);settings->alpha = 1.0; /* Change alpha parameter */}/* Setup solver */exitflag = osqp_setup(&solver, P, q, A, l, u, m, n, settings);/* Solve problem */if (!exitflag) exitflag = osqp_solve(solver);/* Cleanup */osqp_cleanup(solver);if (A) free(A);if (P) free(P);if (settings) free(settings);return (int)exitflag;
};

② Update vectors:更新向量
在这里插入图片描述

#include <stdlib.h>
#include "osqp.h"int main(int argc, char **argv) {/* Load problem data */OSQPFloat P_x[3] = {4.0, 1.0, 2.0, };OSQPInt P_nnz = 3;OSQPInt P_i[3] = {0, 0, 1, };OSQPInt P_p[3] = {0, 1, 3, };OSQPFloat q[2] = {1.0, 1.0, };OSQPFloat q_new[2] = {2.0, 3.0, };OSQPFloat A_x[4] = {1.0, 1.0, 1.0, 1.0, };OSQPInt A_nnz = 4;OSQPInt A_i[4] = {0, 1, 0, 2, };OSQPInt A_p[3] = {0, 2, 4, };OSQPFloat l[3] = {1.0, 0.0, 0.0, };OSQPFloat l_new[3] = {2.0, -1.0, -1.0, };OSQPFloat u[3] = {1.0, 0.7, 0.7, };OSQPFloat u_new[3] = {2.0, 2.5, 2.5, };OSQPInt n = 2;OSQPInt m = 3;/* Exitflag */OSQPInt exitflag = 0;/* Solver, settings, matrices */OSQPSolver   *solver;OSQPSettings *settings;OSQPCscMatrix* P = malloc(sizeof(OSQPCscMatrix));OSQPCscMatrix* A = malloc(sizeof(OSQPCscMatrix));/* Populate matrices */csc_set_data(A, m, n, A_nnz, A_x, A_i, A_p);csc_set_data(P, n, n, P_nnz, P_x, P_i, P_p);/* Set default settings */settings = (OSQPSettings *)malloc(sizeof(OSQPSettings));if (settings) osqp_set_default_settings(settings);/* Setup solver */exitflag = osqp_setup(&solver, P, q, A, l, u, m, n, settings);/* Solve problem */if (!exitflag) exitflag = osqp_solve(solver);/* Update problem */if (!exitflag) exitflag = osqp_update_data_vec(solver, q_new, l_new, u_new);/* Solve updated problem */if (!exitflag) exitflag = osqp_solve(work);/* Cleanup */osqp_cleanup(solver);if (A) free(A);if (P) free(P);if (settings) free(settings);return (int)exitflag;
};

③ Update matrices:更新矩阵P和A
在这里插入图片描述

#include <stdlib.h>
#include "osqp.h"int main(int argc, char **argv) {/* Load problem data */OSQPFloat P_x[3] = {4.0, 1.0, 2.0, };OSQPFloat P_x_new[3] = {5.0, 1.5, 1.0, };OSQPInt P_nnz = 3;OSQPInt P_i[3] = {0, 0, 1, };OSQPInt P_p[3] = {0, 1, 3, };OSQPFloat q[2] = {1.0, 1.0, };OSQPFloat q_new[2] = {2.0, 3.0, };OSQPFloat A_x[4] = {1.0, 1.0, 1.0, 1.0, };OSQPFloat A_x_new[4] = {1.2, 1.5, 1.1, 0.8, };OSQPInt A_nnz = 4;OSQPInt A_i[4] = {0, 1, 0, 2, };OSQPInt A_p[3] = {0, 2, 4, };OSQPFloat l[3] = {1.0, 0.0, 0.0, };OSQPFloat l_new[3] = {2.0, -1.0, -1.0, };OSQPFloat u[3] = {1.0, 0.7, 0.7, };OSQPFloat u_new[3] = {2.0, 2.5, 2.5, };OSQPInt n = 2;OSQPInt m = 3;/* Exitflag */OSQPInt exitflag = 0;/* Solver, settings, matrices */OSQPSolver   *solver;OSQPSettings *settings;OSQPCscMatrix* P = malloc(sizeof(OSQPCscMatrix));OSQPCscMatrix* A = malloc(sizeof(OSQPCscMatrix));/* Populate matrices */csc_set_data(A, m, n, A_nnz, A_x, A_i, A_p);csc_set_data(P, n, n, P_nnz, P_x, P_i, P_p);/* Set default settings */settings = (OSQPSettings *)malloc(sizeof(OSQPSettings));if (settings) osqp_set_default_settings(settings);/* Setup solver */exitflag = osqp_setup(&solver, P, q, A, l, u, m, n, settings);/* Solve problem */if (!exitflag) exitflag = osqp_solve(solver);/*  Update problemNB: Update only upper triangular part of P*/if (!exitflag) exitflag = osqp_update_data_mat(solver,P_x_new, OSQP_NULL, 3,A_x_new, OSQP_NULL, 4);/* Solve updated problem */if (!exitflag) exitflag = osqp_solve(work);/* Cleanup */osqp_cleanup(solver);if (A) free(A);if (P) free(P);if (settings) free(settings);return (int)exitflag;
};

应用:
① Huber fitting
② Lasso
③ Least-squares:最小二乘法
④ Model predictive control (MPC)
我们考虑将线性时不变动力系统控制到某个参考状态的问题。 为了实现这一点,我们使用约束线性二次 MPC,它在每个时间步长求解以下有限视界最优控制问题 x r ∈ R n x x_r∈R^{n_x} xrRnx
在这里插入图片描述

⑤ Portfolio optimization
⑥ Support vector machine (SVM):支持向量机

这篇关于OSQP文档学习的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/728490

相关文章

Go学习记录之runtime包深入解析

《Go学习记录之runtime包深入解析》Go语言runtime包管理运行时环境,涵盖goroutine调度、内存分配、垃圾回收、类型信息等核心功能,:本文主要介绍Go学习记录之runtime包的... 目录前言:一、runtime包内容学习1、作用:① Goroutine和并发控制:② 垃圾回收:③ 栈和

C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式

《C#实现将Office文档(Word/Excel/PDF/PPT)转为Markdown格式》Markdown凭借简洁的语法、优良的可读性,以及对版本控制系统的高度兼容性,逐渐成为最受欢迎的文档格式... 目录为什么要将文档转换为 Markdown 格式使用工具将 Word 文档转换为 Markdown(.

详解如何使用Python构建从数据到文档的自动化工作流

《详解如何使用Python构建从数据到文档的自动化工作流》这篇文章将通过真实工作场景拆解,为大家展示如何用Python构建自动化工作流,让工具代替人力完成这些数字苦力活,感兴趣的小伙伴可以跟随小编一起... 目录一、Excel处理:从数据搬运工到智能分析师二、PDF处理:文档工厂的智能生产线三、邮件自动化:

Python实现自动化Word文档样式复制与内容生成

《Python实现自动化Word文档样式复制与内容生成》在办公自动化领域,高效处理Word文档的样式和内容复制是一个常见需求,本文将展示如何利用Python的python-docx库实现... 目录一、为什么需要自动化 Word 文档处理二、核心功能实现:样式与表格的深度复制1. 表格复制(含样式与内容)2

Android学习总结之Java和kotlin区别超详细分析

《Android学习总结之Java和kotlin区别超详细分析》Java和Kotlin都是用于Android开发的编程语言,它们各自具有独特的特点和优势,:本文主要介绍Android学习总结之Ja... 目录一、空安全机制真题 1:Kotlin 如何解决 Java 的 NullPointerExceptio

Maven项目中集成数据库文档生成工具的操作步骤

《Maven项目中集成数据库文档生成工具的操作步骤》在Maven项目中,可以通过集成数据库文档生成工具来自动生成数据库文档,本文为大家整理了使用screw-maven-plugin(推荐)的完... 目录1. 添加插件配置到 pom.XML2. 配置数据库信息3. 执行生成命令4. 高级配置选项5. 注意事

Python使用python-docx实现自动化处理Word文档

《Python使用python-docx实现自动化处理Word文档》这篇文章主要为大家展示了Python如何通过代码实现段落样式复制,HTML表格转Word表格以及动态生成可定制化模板的功能,感兴趣的... 目录一、引言二、核心功能模块解析1. 段落样式与图片复制2. html表格转Word表格3. 模板生

重新对Java的类加载器的学习方式

《重新对Java的类加载器的学习方式》:本文主要介绍重新对Java的类加载器的学习方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录1、介绍1.1、简介1.2、符号引用和直接引用1、符号引用2、直接引用3、符号转直接的过程2、加载流程3、类加载的分类3.1、显示

浅谈Redis Key 命名规范文档

《浅谈RedisKey命名规范文档》本文介绍了Redis键名命名规范,包括命名格式、具体规范、数据类型扩展命名、时间敏感型键名、规范总结以及实际应用示例,感兴趣的可以了解一下... 目录1. 命名格式格式模板:示例:2. 具体规范2.1 小写命名2.2 使用冒号分隔层级2.3 标识符命名3. 数据类型扩展命

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen