代码随想录算法训练营29期|day55 任务以及具体安排

2024-02-20 12:04

本文主要是介绍代码随想录算法训练营29期|day55 任务以及具体安排,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

第九章 动态规划part12

  •  309.最佳买卖股票时机含冷冻期  
    class Solution {public int maxProfit(int[] prices) {//0代表持股票,1代表保持卖出状态,2代表卖出股票。3代表冷冻int[][] dp = new int[prices.length][4];dp[0][0] = -prices[0];for(int i = 1 ; i < prices.length ; i++){dp[i][0] = Math.max(dp[i-1][0], Math.max(dp[i-1][1]-prices[i], dp[i-1][3]-prices[i]));dp[i][1] = Math.max(dp[i-1][1], dp[i-1][3]);dp[i][2] = dp[i-1][0] + prices[i];dp[i][3] = dp[i-1][2];}return Math.max(dp[prices.length-1][1], Math.max(dp[prices.length-1][2], dp[prices.length-1][3]));}
    }

    思路:分为四种状态进行讨论,所以需要二维数组,0代表持有股票的最大金额,1代表保持卖出状态的最大金额,2表示卖出股票的最大金额,3表示冷冻的最大金额,然后进行递推公式的推导,进行dp数组的初始化。

  •  714.买卖股票的最佳时机含手续费  
    /*** 卖出时支付手续费* @param prices* @param fee* @return*/
    public int maxProfit(int[] prices, int fee) {int len = prices.length;// 0 : 持股(买入)// 1 : 不持股(售出)// dp 定义第i天持股/不持股 所得最多现金int[][] dp = new int[len][2];dp[0][0] = -prices[0];for (int i = 1; i < len; i++) {dp[i][0] = Math.max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = Math.max(dp[i - 1][0] + prices[i] - fee, dp[i - 1][1]);}return Math.max(dp[len - 1][0], dp[len - 1][1]);
    }
    

    思路:该题和买卖股票2基本类似,就是需要减去手续费。

  • 总结

    之前我们已经把力扣上股票系列的题目都讲过的,但没有来一篇股票总结,来帮大家高屋建瓴,所以总结篇这就来了!

    股票问题总结

  • 动态规划:121.买卖股票的最佳时机(opens new window)
  • 动态规划:122.买卖股票的最佳时机II(opens new window)
  • 动态规划:123.买卖股票的最佳时机III(opens new window)
  • 动态规划:188.买卖股票的最佳时机IV(opens new window)
  • 动态规划:309.最佳买卖股票时机含冷冻期(opens new window)
  • 动态规划:714.买卖股票的最佳时机含手续费(opens new window)
  • #卖股票的最佳时机

    动态规划:121.买卖股票的最佳时机 (opens new window),股票只能买卖一次,问最大利润

    【贪心解法】

    取最左最小值,取最右最大值,那么得到的差值就是最大利润,代码如下:

    class Solution {
    public:int maxProfit(vector<int>& prices) {int low = INT_MAX;int result = 0;for (int i = 0; i < prices.size(); i++) {low = min(low, prices[i]);  // 取最左最小价格result = max(result, prices[i] - low); // 直接取最大区间利润}return result;}
    };
    

    【动态规划】

  • dp[i][0] 表示第i天持有股票所得现金。
  • dp[i][1] 表示第i天不持有股票所得现金。
  • 如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是买入今天的股票后所得现金即:-prices[i] 所以dp[i][0] = max(dp[i - 1][0], -prices[i]);
  • 如果第i天不持有股票即dp[i][1], 也可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票佳价格卖出后所得现金即:prices[i] + dp[i - 1][0] 所以dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);
  • 代码如下:

    // 版本一
    class Solution {
    public:int maxProfit(vector<int>& prices) {int len = prices.size();if (len == 0) return 0;vector<vector<int>> dp(len, vector<int>(2));dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i][0] = max(dp[i - 1][0], -prices[i]);dp[i][1] = max(dp[i - 1][1], prices[i] + dp[i - 1][0]);}return dp[len - 1][1];}
    };
    

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)
  • 使用滚动数组,代码如下:

    // 版本二
    class Solution {
    public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(2, vector<int>(2)); // 注意这里只开辟了一个2 * 2大小的二维数组dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i % 2][0] = max(dp[(i - 1) % 2][0], -prices[i]);dp[i % 2][1] = max(dp[(i - 1) % 2][1], prices[i] + dp[(i - 1) % 2][0]);}return dp[(len - 1) % 2][1];}
    };
    

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)
  • #买卖股票的最佳时机II

    动态规划:122.买卖股票的最佳时机II (opens new window)可以多次买卖股票,问最大收益。

    【贪心解法】

    收集每天的正利润便可,代码如下:

    class Solution {
    public:int maxProfit(vector<int>& prices) {int result = 0;for (int i = 1; i < prices.size(); i++) {result += max(prices[i] - prices[i - 1], 0);}return result;}
    };
    

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)
  • 【动态规划】

    dp数组定义:

  • dp[i][0] 表示第i天持有股票所得现金
  • dp[i][1] 表示第i天不持有股票所得最多现金
  • 如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]
  • 注意这里和121. 买卖股票的最佳时机 (opens new window)唯一不同的地方,就是推导dp[i][0]的时候,第i天买入股票的情况

    在121. 买卖股票的最佳时机 (opens new window)中,因为股票全程只能买卖一次,所以如果买入股票,那么第i天持有股票即dp[i][0]一定就是 -prices[i]。

    而本题,因为一只股票可以买卖多次,所以当第i天买入股票的时候,所持有的现金可能有之前买卖过的利润。

    代码如下:(注意代码中的注释,标记了和121.买卖股票的最佳时机唯一不同的地方)

    class Solution {
    public:int maxProfit(vector<int>& prices) {int len = prices.size();vector<vector<int>> dp(len, vector<int>(2, 0));dp[0][0] -= prices[0];dp[0][1] = 0;for (int i = 1; i < len; i++) {dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]); // 注意这里是和121. 买卖股票的最佳时机唯一不同的地方。dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i]);}return dp[len - 1][1];}
    };
    

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)
  • #买卖股票的最佳时机III

    动态规划:123.买卖股票的最佳时机III (opens new window)最多买卖两次,问最大收益。

    【动态规划】

    一天一共就有五个状态,

  • 没有操作
  • 第一次买入
  • 第一次卖出
  • 第二次买入
  • 第二次卖出
  • dp[i][j]中 i表示第i天,j为 [0 - 4] 五个状态,dp[i][j]表示第i天状态j所剩最大现金。

    达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i-1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
  • dp[i][1] = max(dp[i-1][0] - prices[i], dp[i - 1][1]);

    同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
  • 所以dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

    同理可推出剩下状态部分:

    dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);

    dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);

    代码如下:

    // 版本一
    class Solution {
    public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(5, 0));dp[0][1] = -prices[0];dp[0][3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[i][0] = dp[i - 1][0];dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] - prices[i]);dp[i][2] = max(dp[i - 1][2], dp[i - 1][1] + prices[i]);dp[i][3] = max(dp[i - 1][3], dp[i - 1][2] - prices[i]);dp[i][4] = max(dp[i - 1][4], dp[i - 1][3] + prices[i]);}return dp[prices.size() - 1][4];}
    };
    

  • 时间复杂度:O(n)
  • 空间复杂度:O(n × 5)
  • 当然,大家可以看到力扣官方题解里的一种优化空间写法,我这里给出对应的C++版本:

    // 版本二
    class Solution {
    public:int maxProfit(vector<int>& prices) {if (prices.size() == 0) return 0;vector<int> dp(5, 0);dp[1] = -prices[0];dp[3] = -prices[0];for (int i = 1; i < prices.size(); i++) {dp[1] = max(dp[1], dp[0] - prices[i]);dp[2] = max(dp[2], dp[1] + prices[i]);dp[3] = max(dp[3], dp[2] - prices[i]);dp[4] = max(dp[4], dp[3] + prices[i]);}return dp[4];}
    };
    

  • 时间复杂度:O(n)
  • 空间复杂度:O(1)
  • 这种写法看上去简单,其实思路很绕,不建议大家这么写,这么思考,很容易把自己绕进去! 对于本题,把版本一的写法研究明白,足以!

    #买卖股票的最佳时机IV

    动态规划:188.买卖股票的最佳时机IV (opens new window)最多买卖k笔交易,问最大收益。

    使用二维数组 dp[i][j] :第i天的状态为j,所剩下的最大现金是dp[i][j]

    j的状态表示为:

  • 0 表示不操作
  • 1 第一次买入
  • 2 第一次卖出
  • 3 第二次买入
  • 4 第二次卖出
  • .....
  • 除了0以外,偶数就是卖出,奇数就是买入

  • 确定递推公式
  • 达到dp[i][1]状态,有两个具体操作:

  • 操作一:第i天买入股票了,那么dp[i][1] = dp[i - 1][0] - prices[i]
  • 操作二:第i天没有操作,而是沿用前一天买入的状态,即:dp[i][1] = dp[i - 1][1]
  • dp[i][1] = max(dp[i - 1][0] - prices[i], dp[i - 1][1]);

    同理dp[i][2]也有两个操作:

  • 操作一:第i天卖出股票了,那么dp[i][2] = dp[i - 1][1] + prices[i]
  • 操作二:第i天没有操作,沿用前一天卖出股票的状态,即:dp[i][2] = dp[i - 1][2]
  • dp[i][2] = max(dp[i - 1][1] + prices[i], dp[i - 1][2])

    同理可以类比剩下的状态,代码如下:

    for (int j = 0; j < 2 * k - 1; j += 2) {dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);
    }
    

    整体代码如下:

    class Solution {
    public:int maxProfit(int k, vector<int>& prices) {if (prices.size() == 0) return 0;vector<vector<int>> dp(prices.size(), vector<int>(2 * k + 1, 0));for (int j = 1; j < 2 * k; j += 2) {dp[0][j] = -prices[0];}for (int i = 1;i < prices.size(); i++) {for (int j = 0; j < 2 * k - 1; j += 2) {dp[i][j + 1] = max(dp[i - 1][j + 1], dp[i - 1][j] - prices[i]);dp[i][j + 2] = max(dp[i - 1][j + 2], dp[i - 1][j + 1] + prices[i]);}}return dp[prices.size() - 1][2 * k];}
    };
    

    当然有的解法是定义一个三维数组dp[i][j][k],第i天,第j次买卖,k表示买还是卖的状态,从定义上来讲是比较直观。但感觉三维数组操作起来有些麻烦,直接用二维数组来模拟三维数组的情况,代码看起来也清爽一些。

    #最佳买卖股票时机含冷冻期

    动态规划:309.最佳买卖股票时机含冷冻期 (opens new window)可以多次买卖但每次卖出有冷冻期1天。

    相对于动态规划:122.买卖股票的最佳时机II (opens new window),本题加上了一个冷冻期。

    在动态规划:122.买卖股票的最佳时机II (opens new window)中有两个状态,持有股票后的最多现金,和不持有股票的最多现金。本题则可以花费为四个状态

    dp[i][j]:第i天状态为j,所剩的最多现金为dp[i][j]。

    具体可以区分出如下四个状态:

  • 状态一:买入股票状态(今天买入股票,或者是之前就买入了股票然后没有操作)
  • 卖出股票状态,这里就有两种卖出股票状态
    • 状态二:两天前就卖出了股票,度过了冷冻期,一直没操作,今天保持卖出股票状态
    • 状态三:今天卖出了股票
  • 状态四:今天为冷冻期状态,但冷冻期状态不可持续,只有一天!
  • 达到买入股票状态(状态一)即:dp[i][0],有两个具体操作:

  • 操作一:前一天就是持有股票状态(状态一),dp[i][0] = dp[i - 1][0]
  • 操作二:今天买入了,有两种情况
    • 前一天是冷冻期(状态四),dp[i - 1][3] - prices[i]
    • 前一天是保持卖出股票状态(状态二),dp[i - 1][1] - prices[i]
  • 所以操作二取最大值,即:max(dp[i - 1][3], dp[i - 1][1]) - prices[i]

    那么dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);

    达到保持卖出股票状态(状态二)即:dp[i][1],有两个具体操作:

  • 操作一:前一天就是状态二
  • 操作二:前一天是冷冻期(状态四)
  • dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);

    达到今天就卖出股票状态(状态三),即:dp[i][2] ,只有一个操作:

  • 操作一:昨天一定是买入股票状态(状态一),今天卖出
  • 即:dp[i][2] = dp[i - 1][0] + prices[i];

    达到冷冻期状态(状态四),即:dp[i][3],只有一个操作:

  • 操作一:昨天卖出了股票(状态三)
  • p[i][3] = dp[i - 1][2];

    综上分析,递推代码如下:

    dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3]- prices[i], dp[i - 1][1]) - prices[i];
    dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);
    dp[i][2] = dp[i - 1][0] + prices[i];
    dp[i][3] = dp[i - 1][2];
    

    整体代码如下:

    class Solution {
    public:int maxProfit(vector<int>& prices) {int n = prices.size();if (n == 0) return 0;vector<vector<int>> dp(n, vector<int>(4, 0));dp[0][0] -= prices[0]; // 持股票for (int i = 1; i < n; i++) {dp[i][0] = max(dp[i - 1][0], max(dp[i - 1][3], dp[i - 1][1]) - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][3]);dp[i][2] = dp[i - 1][0] + prices[i];dp[i][3] = dp[i - 1][2];}return max(dp[n - 1][3],max(dp[n - 1][1], dp[n - 1][2]));}
    };
    

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)
  • #买卖股票的最佳时机含手续费

    动态规划:714.买卖股票的最佳时机含手续费 (opens new window)可以多次买卖,但每次有手续费。

    相对于动态规划:122.买卖股票的最佳时机II (opens new window),本题只需要在计算卖出操作的时候减去手续费就可以了,代码几乎是一样的。

    唯一差别在于递推公式部分,所以本篇也就不按照动规五部曲详细讲解了,主要讲解一下递推公式部分。

    这里重申一下dp数组的含义:

    dp[i][0] 表示第i天持有股票所省最多现金。 dp[i][1] 表示第i天不持有股票所得最多现金

    如果第i天持有股票即dp[i][0], 那么可以由两个状态推出来

  • 第i-1天就持有股票,那么就保持现状,所得现金就是昨天持有股票的所得现金 即:dp[i - 1][0]
  • 第i天买入股票,所得现金就是昨天不持有股票的所得现金减去 今天的股票价格 即:dp[i - 1][1] - prices[i]
  • 所以:dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);

    在来看看如果第i天不持有股票即dp[i][1]的情况, 依然可以由两个状态推出来

  • 第i-1天就不持有股票,那么就保持现状,所得现金就是昨天不持有股票的所得现金 即:dp[i - 1][1]
  • 第i天卖出股票,所得现金就是按照今天股票价格卖出后所得现金,注意这里需要有手续费了即:dp[i - 1][0] + prices[i] - fee
  • 所以:dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);

    本题和动态规划:122.买卖股票的最佳时机II (opens new window)的区别就是这里需要多一个减去手续费的操作

    以上分析完毕,代码如下:

    class Solution {
    public:int maxProfit(vector<int>& prices, int fee) {int n = prices.size();vector<vector<int>> dp(n, vector<int>(2, 0));dp[0][0] -= prices[0]; // 持股票for (int i = 1; i < n; i++) {dp[i][0] = max(dp[i - 1][0], dp[i - 1][1] - prices[i]);dp[i][1] = max(dp[i - 1][1], dp[i - 1][0] + prices[i] - fee);}return max(dp[n - 1][0], dp[n - 1][1]);}
    };
    

  • 时间复杂度:O(n)
  • 空间复杂度:O(n)

这篇关于代码随想录算法训练营29期|day55 任务以及具体安排的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/728155

相关文章

springboot使用Scheduling实现动态增删启停定时任务教程

《springboot使用Scheduling实现动态增删启停定时任务教程》:本文主要介绍springboot使用Scheduling实现动态增删启停定时任务教程,具有很好的参考价值,希望对大家有... 目录1、配置定时任务需要的线程池2、创建ScheduledFuture的包装类3、注册定时任务,增加、删

利用Python调试串口的示例代码

《利用Python调试串口的示例代码》在嵌入式开发、物联网设备调试过程中,串口通信是最基础的调试手段本文将带你用Python+ttkbootstrap打造一款高颜值、多功能的串口调试助手,需要的可以了... 目录概述:为什么需要专业的串口调试工具项目架构设计1.1 技术栈选型1.2 关键类说明1.3 线程模

Python Transformers库(NLP处理库)案例代码讲解

《PythonTransformers库(NLP处理库)案例代码讲解》本文介绍transformers库的全面讲解,包含基础知识、高级用法、案例代码及学习路径,内容经过组织,适合不同阶段的学习者,对... 目录一、基础知识1. Transformers 库简介2. 安装与环境配置3. 快速上手示例二、核心模

Java的栈与队列实现代码解析

《Java的栈与队列实现代码解析》栈是常见的线性数据结构,栈的特点是以先进后出的形式,后进先出,先进后出,分为栈底和栈顶,栈应用于内存的分配,表达式求值,存储临时的数据和方法的调用等,本文给大家介绍J... 目录栈的概念(Stack)栈的实现代码队列(Queue)模拟实现队列(双链表实现)循环队列(循环数组

Spring Boot 集成 Quartz并使用Cron 表达式实现定时任务

《SpringBoot集成Quartz并使用Cron表达式实现定时任务》本篇文章介绍了如何在SpringBoot中集成Quartz进行定时任务调度,并通过Cron表达式控制任务... 目录前言1. 添加 Quartz 依赖2. 创建 Quartz 任务3. 配置 Quartz 任务调度4. 启动 Sprin

Linux之计划任务和调度命令at/cron详解

《Linux之计划任务和调度命令at/cron详解》:本文主要介绍Linux之计划任务和调度命令at/cron的使用,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录linux计划任务和调度命令at/cron一、计划任务二、命令{at}介绍三、命令语法及功能 :at

使用Java将DOCX文档解析为Markdown文档的代码实现

《使用Java将DOCX文档解析为Markdown文档的代码实现》在现代文档处理中,Markdown(MD)因其简洁的语法和良好的可读性,逐渐成为开发者、技术写作者和内容创作者的首选格式,然而,许多文... 目录引言1. 工具和库介绍2. 安装依赖库3. 使用Apache POI解析DOCX文档4. 将解析

C++使用printf语句实现进制转换的示例代码

《C++使用printf语句实现进制转换的示例代码》在C语言中,printf函数可以直接实现部分进制转换功能,通过格式说明符(formatspecifier)快速输出不同进制的数值,下面给大家分享C+... 目录一、printf 原生支持的进制转换1. 十进制、八进制、十六进制转换2. 显示进制前缀3. 指

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

使用Python实现全能手机虚拟键盘的示例代码

《使用Python实现全能手机虚拟键盘的示例代码》在数字化办公时代,你是否遇到过这样的场景:会议室投影电脑突然键盘失灵、躺在沙发上想远程控制书房电脑、或者需要给长辈远程协助操作?今天我要分享的Pyth... 目录一、项目概述:不止于键盘的远程控制方案1.1 创新价值1.2 技术栈全景二、需求实现步骤一、需求