【DGL】节点分类(GCN、SAGE、自定义)

2024-02-20 09:30

本文主要是介绍【DGL】节点分类(GCN、SAGE、自定义),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

    • 使用dgl进行节点分类(GCN)
      • 数据集
      • 搭建网络
      • 训练
    • 使用dgl进行节点分类(SAGE)
      • 实现SAGE
      • 引入边权
      • 更多自定义操作

使用dgl进行节点分类(GCN)

数据集

dataset = dgl.data.CoraGraphDataset()
print("Number of categories:", dataset.num_classes)
g = dataset[0]

数据集信息:
Cora dataset,引用网络图,其中,节点表示论文,边表示论文的引用。任务是预测给定论文的类别。

NumNodes: 2708NumEdges: 10556NumFeats: 1433NumClasses: 7NumTrainingSamples: 140NumValidationSamples: 500NumTestSamples: 1000
Done loading data from cached files.
Number of categories: 7

其中,含有一个graph:

Graph(num_nodes=2708, num_edges=10556,ndata_schemes={'train_mask': Scheme(shape=(), dtype=torch.bool), 'label': Scheme(shape=(), dtype=torch.int64), 'val_mask': Scheme(shape=(), dtype=torch.bool), 'test_mask': Scheme(shape=(), dtype=torch.bool), 'feat': Scheme(shape=(1433,), dtype=torch.float32)}edata_schemes={})

train_mask: A boolean tensor indicating whether the node is in the training set.
val_mask: A boolean tensor indicating whether the node is in the validation set.
test_mask: A boolean tensor indicating whether the node is in the test set.
label: The ground truth node category.
feat: The node features.

搭建网络

根据Graph Convolutional Network (GCN)搭建两层的图卷积神经网络。每一层通过聚合邻居节点的信息来计算新的节点表示。
在这里插入图片描述

class GCN(nn.Module):def __init__(self, in_feats, h_feats, num_classes):super(GCN, self).__init__()self.conv1 = GraphConv(in_feats, h_feats)self.conv2 = GraphConv(h_feats, num_classes)def forward(self, g, in_feat):h = self.conv1(g, in_feat)h = F.relu(h)h = self.conv2(g, h)return hmodel = GCN(g.ndata['feat'].shape[1], 16, dataset.num_classes)
print(model)

数学上表示成1 h i ( l + 1 ) = σ ( b ( l ) + ∑ j ∈ N ( i ) 1 c j i h j ( l ) W ( l ) ) h_i^{(l+1)} = \sigma(b^{(l)} + \sum_{j\in\mathcal{N}(i)}\frac{1}{c_{ji}}h_j^{(l)}W^{(l)}) hi(l+1)=σ(b(l)+jN(i)cji1hj(l)W(l))

模型结构:

GCN((conv1): GraphConv(in=1433, out=16, normalization=both, activation=None)(conv2): GraphConv(in=16, out=7, normalization=both, activation=None)
)

训练

def train(g, model):optimizer = torch.optim.Adam(model.parameters(), lr=0.01)best_val_acc = 0best_test_acc = 0features = g.ndata['feat']labels = g.ndata['label']train_mask = g.ndata['train_mask']val_mask = g.ndata['val_mask']test_mask = g.ndata['test_mask']for e in range(100):logits = model(g, features)pred = logits.argmax(1)loss = F.cross_entropy(logits[train_mask], labels[train_mask])train_acc = (pred[train_mask] == labels[train_mask]).float().mean()val_acc = (pred[val_mask] == labels[val_mask]).float().mean()test_acc = (pred[test_mask] == labels[test_mask]).float().mean()if(best_val_acc < val_acc):best_val_acc = val_accbest_test_acc = test_accoptimizer.zero_grad()loss.backward()optimizer.step()if(e%5==0):print("In epoch {}, loss: {:.3f}, val acc: {:.3f} (best {:.3f}), test acc: {:.3f} (best {:.3f})".format(e, loss, val_acc, best_val_acc, test_acc, best_test_acc))train(g, model)
In epoch 0, loss: 1.946, val acc: 0.240 (best 0.240), test acc: 0.254 (best 0.254)
In epoch 5, loss: 1.903, val acc: 0.642 (best 0.642), test acc: 0.639 (best 0.639)
In epoch 10, loss: 1.837, val acc: 0.696 (best 0.700), test acc: 0.711 (best 0.715)
In epoch 15, loss: 1.746, val acc: 0.674 (best 0.700), test acc: 0.685 (best 0.715)
In epoch 20, loss: 1.628, val acc: 0.694 (best 0.700), test acc: 0.710 (best 0.715)
In epoch 25, loss: 1.484, val acc: 0.690 (best 0.700), test acc: 0.715 (best 0.715)
In epoch 30, loss: 1.321, val acc: 0.710 (best 0.710), test acc: 0.732 (best 0.732)
In epoch 35, loss: 1.144, val acc: 0.714 (best 0.720), test acc: 0.738 (best 0.737)
In epoch 40, loss: 0.966, val acc: 0.730 (best 0.730), test acc: 0.742 (best 0.742)
In epoch 45, loss: 0.797, val acc: 0.742 (best 0.742), test acc: 0.745 (best 0.745)
In epoch 50, loss: 0.647, val acc: 0.756 (best 0.756), test acc: 0.756 (best 0.756)
In epoch 55, loss: 0.520, val acc: 0.762 (best 0.762), test acc: 0.759 (best 0.759)
In epoch 60, loss: 0.416, val acc: 0.768 (best 0.768), test acc: 0.767 (best 0.765)
In epoch 65, loss: 0.334, val acc: 0.762 (best 0.768), test acc: 0.771 (best 0.765)
In epoch 70, loss: 0.270, val acc: 0.758 (best 0.768), test acc: 0.774 (best 0.765)
In epoch 75, loss: 0.220, val acc: 0.760 (best 0.768), test acc: 0.777 (best 0.765)
In epoch 80, loss: 0.182, val acc: 0.764 (best 0.768), test acc: 0.779 (best 0.765)
In epoch 85, loss: 0.151, val acc: 0.764 (best 0.768), test acc: 0.780 (best 0.765)
In epoch 90, loss: 0.128, val acc: 0.764 (best 0.768), test acc: 0.782 (best 0.765)
In epoch 95, loss: 0.109, val acc: 0.766 (best 0.768), test acc: 0.779 (best 0.765)Process finished with exit code 0

使用dgl进行节点分类(SAGE)

dgl遵循消息传递网络范式2。GraphSAGE convolution (Hamilton et al., 2017)具有以下形式:

h N ( v ) k ← A v e r a g e { h u k − 1 , ∀ u ∈ N ( v ) } h v k ← R e L U ( W k ⋅ C O N C A T ( h v k − 1 , h N ( v ) k ) ) h_\mathcal{N(v)}^k \gets Average\{ h_u ^{k-1} , \forall u \in \mathcal{N}(v) \} \\ h_v^k \gets ReLU(W^k \cdot CONCAT(h_v^{k-1}, h^k _{\mathcal{N}(v)})) hN(v)kAverage{huk1,uN(v)}hvkReLU(WkCONCAT(hvk1,hN(v)k))

实现SAGE

在dgl中有内置的SAGEConv。下面来自己实现:

class SAGEConv(nn.Module):def __init__(self, in_feat, out_feat):super(SAGEConv, self).__init__()# A linear submodule for projecting the input and neighbor feature to the output.self.linear = nn.Linear(in_feat*2, out_feat) # Wdef forward(self, g, h):with g.local_scope():#在这个区域内对g的修改不会同步到原始的图上g.ndata['h'] = hg.update_all(    #对所有的节点和边采用下面的message函数和reduce函数message_func=fn.copy_u("h", "m"), #message函数:将节点特征'h'作为消息传递给邻居,命名为'm'reduce_func=fn.mean("m", "h_N"),  #reduce函数:将接收到的'm'信息取平均,保存至节点特征'h_N')h_N = g.ndata["h_N"]h_total = torch.cat([h, h_N], dim=1)return self.linear(h_total)

依此搭建新的网络:

class Model(nn.Module):def __init__(self, in_feats, h_feats, num_classes):super(Model, self).__init__()self.conv1 = SAGEConv(in_feats, h_feats)self.conv2 = SAGEConv(h_feats, num_classes)def forward(self, g, in_feat):h = self.conv1(g, in_feat)h = F.relu(h)h = self.conv2(g, h)return hmodel = Model(g.ndata['feat'].shape[1], 16, dataset.num_classes)

效果和GCN差不多吧

引入边权

class WeightedSAGEConv(nn.Module):def __init__(self, in_feat, out_feat):super(WeightedSAGEConv, self).__init__()# A linear submodule for projecting the input and neighbor feature to the output.self.linear = nn.Linear(in_feat * 2, out_feat)def forward(self, g, h, w):with g.local_scope():g.ndata["h"] = hg.edata["w"] = wg.update_all(message_func=fn.u_mul_e("h", "w", "m"), #节点特征'h' 与 邻居间的边特征'w' 的乘积作为消息传递给邻居,记作'm'reduce_func=fn.mean("m", "h_N"), #将接收到的'm'信息取平均,保存至节点特征'h_N')h_N = g.ndata["h_N"]h_total = torch.cat([h, h_N], dim=1)return self.linear(h_total)class Model(nn.Module):def __init__(self, in_feats, h_feats, num_classes):super(Model, self).__init__()self.conv1 = WeightedSAGEConv(in_feats, h_feats)self.conv2 = WeightedSAGEConv(h_feats, num_classes)def forward(self, g, in_feat):h = self.conv1(g, in_feat, torch.ones(g.num_edges(), 1).to(g.device))#数据中没有边特征,在这里手动添加h = F.relu(h)h = self.conv2(g, h, torch.ones(g.num_edges(), 1).to(g.device))return hmodel = Model(g.ndata["feat"].shape[1], 16, dataset.num_classes)

更多自定义操作

见dgl.function

内置函数 dgl.function.u_add_v('hu','hv',' he')等价于:

def message_func(edges):#返回值为字典形式return {'he': edges.src['hu'] + edges.dst['hv']}

  1. https://docs.dgl.ai/generated/dgl.nn.pytorch.conv.GraphConv.html#dgl.nn.pytorch.conv.GraphConv ↩︎

  2. Neural Message Passing for Quantum Chemistry ↩︎

这篇关于【DGL】节点分类(GCN、SAGE、自定义)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/727760

相关文章

C#中通过Response.Headers设置自定义参数的代码示例

《C#中通过Response.Headers设置自定义参数的代码示例》:本文主要介绍C#中通过Response.Headers设置自定义响应头的方法,涵盖基础添加、安全校验、生产实践及调试技巧,强... 目录一、基础设置方法1. 直接添加自定义头2. 批量设置模式二、高级配置技巧1. 安全校验机制2. 类型

SpringBoot AspectJ切面配合自定义注解实现权限校验的示例详解

《SpringBootAspectJ切面配合自定义注解实现权限校验的示例详解》本文章介绍了如何通过创建自定义的权限校验注解,配合AspectJ切面拦截注解实现权限校验,本文结合实例代码给大家介绍的非... 目录1. 创建权限校验注解2. 创建ASPectJ切面拦截注解校验权限3. 用法示例A. 参考文章本文

Vite 打包目录结构自定义配置小结

《Vite打包目录结构自定义配置小结》在Vite工程开发中,默认打包后的dist目录资源常集中在asset目录下,不利于资源管理,本文基于Rollup配置原理,本文就来介绍一下通过Vite配置自定义... 目录一、实现原理二、具体配置步骤1. 基础配置文件2. 配置说明(1)js 资源分离(2)非 JS 资

聊聊springboot中如何自定义消息转换器

《聊聊springboot中如何自定义消息转换器》SpringBoot通过HttpMessageConverter处理HTTP数据转换,支持多种媒体类型,接下来通过本文给大家介绍springboot中... 目录核心接口springboot默认提供的转换器如何自定义消息转换器Spring Boot 中的消息

Python自定义异常的全面指南(入门到实践)

《Python自定义异常的全面指南(入门到实践)》想象你正在开发一个银行系统,用户转账时余额不足,如果直接抛出ValueError,调用方很难区分是金额格式错误还是余额不足,这正是Python自定义异... 目录引言:为什么需要自定义异常一、异常基础:先搞懂python的异常体系1.1 异常是什么?1.2

Linux中的自定义协议+序列反序列化用法

《Linux中的自定义协议+序列反序列化用法》文章探讨网络程序在应用层的实现,涉及TCP协议的数据传输机制、结构化数据的序列化与反序列化方法,以及通过JSON和自定义协议构建网络计算器的思路,强调分层... 目录一,再次理解协议二,序列化和反序列化三,实现网络计算器3.1 日志文件3.2Socket.hpp

C语言自定义类型之联合和枚举解读

《C语言自定义类型之联合和枚举解读》联合体共享内存,大小由最大成员决定,遵循对齐规则;枚举类型列举可能值,提升可读性和类型安全性,两者在C语言中用于优化内存和程序效率... 目录一、联合体1.1 联合体类型的声明1.2 联合体的特点1.2.1 特点11.2.2 特点21.2.3 特点31.3 联合体的大小1

springboot自定义注解RateLimiter限流注解技术文档详解

《springboot自定义注解RateLimiter限流注解技术文档详解》文章介绍了限流技术的概念、作用及实现方式,通过SpringAOP拦截方法、缓存存储计数器,结合注解、枚举、异常类等核心组件,... 目录什么是限流系统架构核心组件详解1. 限流注解 (@RateLimiter)2. 限流类型枚举 (

SpringBoot 异常处理/自定义格式校验的问题实例详解

《SpringBoot异常处理/自定义格式校验的问题实例详解》文章探讨SpringBoot中自定义注解校验问题,区分参数级与类级约束触发的异常类型,建议通过@RestControllerAdvice... 目录1. 问题简要描述2. 异常触发1) 参数级别约束2) 类级别约束3. 异常处理1) 字段级别约束

SpringBoot+EasyExcel实现自定义复杂样式导入导出

《SpringBoot+EasyExcel实现自定义复杂样式导入导出》这篇文章主要为大家详细介绍了SpringBoot如何结果EasyExcel实现自定义复杂样式导入导出功能,文中的示例代码讲解详细,... 目录安装处理自定义导出复杂场景1、列不固定,动态列2、动态下拉3、自定义锁定行/列,添加密码4、合并