【python】深入探索使用Matplotlib中的plt.legend()添加图例

2024-02-20 04:04

本文主要是介绍【python】深入探索使用Matplotlib中的plt.legend()添加图例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当我们绘制复杂的图表,尤其是包含多个数据系列的图表时,一个清晰、易读的图例是至关重要的。plt.legend()函数是Matplotlib库中用于添加和定制图例的关键工具。在本篇博文中,我们将深入探讨plt.legend()的功能、用法以及如何通过它提升图表的可读性和美观度。

1.plt.legend()的基本用法

首先,我们需要了解plt.legend()的基本用法。通常,在绘制完图表的数据系列后,我们可以简单地调用plt.legend()来自动创建一个图例。例如:

# -*- coding: utf-8 -*-
"""
Created on Mon Feb 19 13:33:58 2024@author: zqq
"""import matplotlib.pyplot as plt  
import numpy as np  x = np.linspace(0, 10, 100)  
y1 = np.sin(x)  
y2 = np.cos(x)  plt.rcParams['axes.unicode_minus']=False  # 显示负号plt.plot(x, y1, label='sin(x)')  
plt.plot(x, y2, label='cos(x)')  plt.legend()  
plt.show()

在这个例子中,label参数用于为数据系列指定标签,这些标签随后被plt.legend()用来创建图例。

这段代码在Spyder编辑器中如下:

在这里插入图片描述
运行代码,得到下面的图表:

在这里插入图片描述
可以看到图例(蓝色实线sin(x)、橙色实线cos(x))在左下角,我们可以通过设置超参数指定该图例的位置。plt.rcParams[‘axes.unicode_minus’]=False # 显示负号,这段代码表示正常显示负号。

使用方法:

plt.legend(loc='xxx')

xxx的取值为:

  • ‘best’(默认值):自动选择最佳位置。
  • ‘upper right’:右上角。
  • ‘upper left’:左上角。
  • ‘lower right’:右下角。
  • ‘lower left’:左下角。
  • ‘right’:右侧。
  • ‘center left’:左侧中央。
  • ‘center right’:右侧中央。
  • ‘lower center’:底部中央。
  • ‘upper center’:顶部中央。

2.plt.legend()的示例

# -*- coding: utf-8 -*-
"""
Created on Mon Feb 19 11:21:04 2024@author: zqq
"""import matplotlib.pyplot as plt
from matplotlib import pyplot as plt# 示例数据
x = [1, 2, 3, 4, 5, 6, 7]
y1 = [9, 12, 18, 20, 15, 17, 27]
y2 = [8, 12, 9, 14, 11, 15, 16]
y3 = [12, 14, 10, 12, 16, 18, 20]
y4 = [11, 19, 6, 15, 14, 16, 23]# 绘制数据,并添加标签
plt.plot(x, y1, label='数据系列1')
plt.plot(x, y2, label='数据系列2')
plt.plot(x, y3, label='数据系列3')
plt.plot(x, y4, label='数据系列4')plt.rcParams['font.sans-serif']=['simHei']  # 中文显示# 添加图例
plt.legend(loc='lower right')# 显示图表
plt.show()

plt.rcParams[‘font.sans-serif’]=[‘simHei’] # 中文显示,这段代码表示正常显示中文。

plt.legend(loc=‘lower right’),显示在右下角:

在这里插入图片描述

plt.legend(loc=‘upper left’),显示在左上角:

# -*- coding: utf-8 -*-
"""
Created on Mon Feb 19 11:21:04 2024@author: zqq
"""import matplotlib.pyplot as plt
from matplotlib import pyplot as plt# 示例数据
x = [1, 2, 3, 4, 5, 6, 7]
y1 = [9, 12, 18, 20, 15, 17, 27]
y2 = [8, 12, 9, 14, 11, 15, 16]
y3 = [12, 14, 10, 12, 16, 18, 20]
y4 = [11, 19, 6, 15, 14, 16, 23]# 绘制数据,并添加标签
plt.plot(x, y1, label='数据系列1')
plt.plot(x, y2, label='数据系列2')
plt.plot(x, y3, label='数据系列3')
plt.plot(x, y4, label='数据系列4')plt.rcParams['font.sans-serif']=['simHei']  # 中文显示# 添加图例
plt.legend(loc='upper left')# 显示图表
plt.show()

在这里插入图片描述

plt.legend(),默认参数,显示在最佳位置:

# -*- coding: utf-8 -*-
"""
Created on Mon Feb 19 11:21:04 2024@author: zqq
"""import matplotlib.pyplot as plt
from matplotlib import pyplot as plt# 示例数据
x = [1, 2, 3, 4, 5, 6, 7]
y1 = [9, 12, 18, 20, 15, 17, 27]
y2 = [8, 12, 9, 14, 11, 15, 16]
y3 = [12, 14, 10, 12, 16, 18, 20]
y4 = [11, 19, 6, 15, 14, 16, 23]# 绘制数据,并添加标签
plt.plot(x, y1, label='数据系列1')
plt.plot(x, y2, label='数据系列2')
plt.plot(x, y3, label='数据系列3')
plt.plot(x, y4, label='数据系列4')plt.rcParams['font.sans-serif']=['simHei']  # 中文显示# 添加图例
plt.legend()# 显示图表
plt.show()

在这里插入图片描述

图例不仅是数据系列的标识,它也是图表整体设计的一部分。合适的图例位置、大小和样式可以极大地提高图表的可读性和吸引力。在设计图表时,考虑图例与其他图表元素(如标题、轴标签、刻度等)的协调性和一致性非常重要。plt.legend()是Matplotlib中不可或缺的一个函数,它使得我们能够轻松地为图表添加清晰、美观的图例。通过了解其基本用法和定制选项,你可以创建出既信息丰富又视觉上吸引人的图表。不断实践和探索,你将发现plt.legend()为你的数据可视化工作带来的无限可能。

这是2024年的第一篇博文,本来想写更好的内容,但是工作是越来越卷了,根本没有时间撰写更优质的博文,已经断更挺长时间了。借着今天修改代码中的图例,挤出时间写成文章,实属不易,干货不多,还望各位海涵。后面将继续更新专栏文章,回馈广大粉丝朋友。

好了,今天的学习就到这里,让我们下期再见。

参考:
https://blog.csdn.net/weixin_74850661/article/details/132949071

这篇关于【python】深入探索使用Matplotlib中的plt.legend()添加图例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/726982

相关文章

基于Python构建一个高效词汇表

《基于Python构建一个高效词汇表》在自然语言处理(NLP)领域,构建高效的词汇表是文本预处理的关键步骤,本文将解析一个使用Python实现的n-gram词频统计工具,感兴趣的可以了解下... 目录一、项目背景与目标1.1 技术需求1.2 核心技术栈二、核心代码解析2.1 数据处理函数2.2 数据处理流程

CnPlugin是PL/SQL Developer工具插件使用教程

《CnPlugin是PL/SQLDeveloper工具插件使用教程》:本文主要介绍CnPlugin是PL/SQLDeveloper工具插件使用教程,具有很好的参考价值,希望对大家有所帮助,如有错... 目录PL/SQL Developer工具插件使用安装拷贝文件配置总结PL/SQL Developer工具插

SpringBoot3中使用虚拟线程的完整步骤

《SpringBoot3中使用虚拟线程的完整步骤》在SpringBoot3中使用Java21+的虚拟线程(VirtualThreads)可以显著提升I/O密集型应用的并发能力,这篇文章为大家介绍了详细... 目录1. 环境准备2. 配置虚拟线程方式一:全局启用虚拟线程(Tomcat/Jetty)方式二:异步

Python远程控制MySQL的完整指南

《Python远程控制MySQL的完整指南》MySQL是最流行的关系型数据库之一,Python通过多种方式可以与MySQL进行交互,下面小编就为大家详细介绍一下Python操作MySQL的常用方法和最... 目录1. 准备工作2. 连接mysql数据库使用mysql-connector使用PyMySQL3.

使用Python实现base64字符串与图片互转的详细步骤

《使用Python实现base64字符串与图片互转的详细步骤》要将一个Base64编码的字符串转换为图片文件并保存下来,可以使用Python的base64模块来实现,这一过程包括解码Base64字符串... 目录1. 图片编码为 Base64 字符串2. Base64 字符串解码为图片文件3. 示例使用注意

使用Python实现获取屏幕像素颜色值

《使用Python实现获取屏幕像素颜色值》这篇文章主要为大家详细介绍了如何使用Python实现获取屏幕像素颜色值,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 一、一个小工具,按住F10键,颜色值会跟着显示。完整代码import tkinter as tkimport pyau

python编写朋克风格的天气查询程序

《python编写朋克风格的天气查询程序》这篇文章主要为大家详细介绍了一个基于Python的桌面应用程序,使用了tkinter库来创建图形用户界面并通过requests库调用Open-MeteoAPI... 目录工具介绍工具使用说明python脚本内容如何运行脚本工具介绍这个天气查询工具是一个基于 Pyt

Linux使用scp进行远程目录文件复制的详细步骤和示例

《Linux使用scp进行远程目录文件复制的详细步骤和示例》在Linux系统中,scp(安全复制协议)是一个使用SSH(安全外壳协议)进行文件和目录安全传输的命令,它允许在远程主机之间复制文件和目录,... 目录1. 什么是scp?2. 语法3. 示例示例 1: 复制本地目录到远程主机示例 2: 复制远程主

Python FastMCP构建MCP服务端与客户端的详细步骤

《PythonFastMCP构建MCP服务端与客户端的详细步骤》MCP(Multi-ClientProtocol)是一种用于构建可扩展服务的通信协议框架,本文将使用FastMCP搭建一个支持St... 目录简介环境准备服务端实现(server.py)客户端实现(client.py)运行效果扩展方向常见问题结

Java Lambda表达式的使用详解

《JavaLambda表达式的使用详解》:本文主要介绍JavaLambda表达式的使用方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录一、前言二、Lambda表达式概述1. 什么是Lambda表达式?三、Lambda表达式的语法规则1. 无参数的Lambda表