【python】深入探索使用Matplotlib中的plt.legend()添加图例

2024-02-20 04:04

本文主要是介绍【python】深入探索使用Matplotlib中的plt.legend()添加图例,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

当我们绘制复杂的图表,尤其是包含多个数据系列的图表时,一个清晰、易读的图例是至关重要的。plt.legend()函数是Matplotlib库中用于添加和定制图例的关键工具。在本篇博文中,我们将深入探讨plt.legend()的功能、用法以及如何通过它提升图表的可读性和美观度。

1.plt.legend()的基本用法

首先,我们需要了解plt.legend()的基本用法。通常,在绘制完图表的数据系列后,我们可以简单地调用plt.legend()来自动创建一个图例。例如:

# -*- coding: utf-8 -*-
"""
Created on Mon Feb 19 13:33:58 2024@author: zqq
"""import matplotlib.pyplot as plt  
import numpy as np  x = np.linspace(0, 10, 100)  
y1 = np.sin(x)  
y2 = np.cos(x)  plt.rcParams['axes.unicode_minus']=False  # 显示负号plt.plot(x, y1, label='sin(x)')  
plt.plot(x, y2, label='cos(x)')  plt.legend()  
plt.show()

在这个例子中,label参数用于为数据系列指定标签,这些标签随后被plt.legend()用来创建图例。

这段代码在Spyder编辑器中如下:

在这里插入图片描述
运行代码,得到下面的图表:

在这里插入图片描述
可以看到图例(蓝色实线sin(x)、橙色实线cos(x))在左下角,我们可以通过设置超参数指定该图例的位置。plt.rcParams[‘axes.unicode_minus’]=False # 显示负号,这段代码表示正常显示负号。

使用方法:

plt.legend(loc='xxx')

xxx的取值为:

  • ‘best’(默认值):自动选择最佳位置。
  • ‘upper right’:右上角。
  • ‘upper left’:左上角。
  • ‘lower right’:右下角。
  • ‘lower left’:左下角。
  • ‘right’:右侧。
  • ‘center left’:左侧中央。
  • ‘center right’:右侧中央。
  • ‘lower center’:底部中央。
  • ‘upper center’:顶部中央。

2.plt.legend()的示例

# -*- coding: utf-8 -*-
"""
Created on Mon Feb 19 11:21:04 2024@author: zqq
"""import matplotlib.pyplot as plt
from matplotlib import pyplot as plt# 示例数据
x = [1, 2, 3, 4, 5, 6, 7]
y1 = [9, 12, 18, 20, 15, 17, 27]
y2 = [8, 12, 9, 14, 11, 15, 16]
y3 = [12, 14, 10, 12, 16, 18, 20]
y4 = [11, 19, 6, 15, 14, 16, 23]# 绘制数据,并添加标签
plt.plot(x, y1, label='数据系列1')
plt.plot(x, y2, label='数据系列2')
plt.plot(x, y3, label='数据系列3')
plt.plot(x, y4, label='数据系列4')plt.rcParams['font.sans-serif']=['simHei']  # 中文显示# 添加图例
plt.legend(loc='lower right')# 显示图表
plt.show()

plt.rcParams[‘font.sans-serif’]=[‘simHei’] # 中文显示,这段代码表示正常显示中文。

plt.legend(loc=‘lower right’),显示在右下角:

在这里插入图片描述

plt.legend(loc=‘upper left’),显示在左上角:

# -*- coding: utf-8 -*-
"""
Created on Mon Feb 19 11:21:04 2024@author: zqq
"""import matplotlib.pyplot as plt
from matplotlib import pyplot as plt# 示例数据
x = [1, 2, 3, 4, 5, 6, 7]
y1 = [9, 12, 18, 20, 15, 17, 27]
y2 = [8, 12, 9, 14, 11, 15, 16]
y3 = [12, 14, 10, 12, 16, 18, 20]
y4 = [11, 19, 6, 15, 14, 16, 23]# 绘制数据,并添加标签
plt.plot(x, y1, label='数据系列1')
plt.plot(x, y2, label='数据系列2')
plt.plot(x, y3, label='数据系列3')
plt.plot(x, y4, label='数据系列4')plt.rcParams['font.sans-serif']=['simHei']  # 中文显示# 添加图例
plt.legend(loc='upper left')# 显示图表
plt.show()

在这里插入图片描述

plt.legend(),默认参数,显示在最佳位置:

# -*- coding: utf-8 -*-
"""
Created on Mon Feb 19 11:21:04 2024@author: zqq
"""import matplotlib.pyplot as plt
from matplotlib import pyplot as plt# 示例数据
x = [1, 2, 3, 4, 5, 6, 7]
y1 = [9, 12, 18, 20, 15, 17, 27]
y2 = [8, 12, 9, 14, 11, 15, 16]
y3 = [12, 14, 10, 12, 16, 18, 20]
y4 = [11, 19, 6, 15, 14, 16, 23]# 绘制数据,并添加标签
plt.plot(x, y1, label='数据系列1')
plt.plot(x, y2, label='数据系列2')
plt.plot(x, y3, label='数据系列3')
plt.plot(x, y4, label='数据系列4')plt.rcParams['font.sans-serif']=['simHei']  # 中文显示# 添加图例
plt.legend()# 显示图表
plt.show()

在这里插入图片描述

图例不仅是数据系列的标识,它也是图表整体设计的一部分。合适的图例位置、大小和样式可以极大地提高图表的可读性和吸引力。在设计图表时,考虑图例与其他图表元素(如标题、轴标签、刻度等)的协调性和一致性非常重要。plt.legend()是Matplotlib中不可或缺的一个函数,它使得我们能够轻松地为图表添加清晰、美观的图例。通过了解其基本用法和定制选项,你可以创建出既信息丰富又视觉上吸引人的图表。不断实践和探索,你将发现plt.legend()为你的数据可视化工作带来的无限可能。

这是2024年的第一篇博文,本来想写更好的内容,但是工作是越来越卷了,根本没有时间撰写更优质的博文,已经断更挺长时间了。借着今天修改代码中的图例,挤出时间写成文章,实属不易,干货不多,还望各位海涵。后面将继续更新专栏文章,回馈广大粉丝朋友。

好了,今天的学习就到这里,让我们下期再见。

参考:
https://blog.csdn.net/weixin_74850661/article/details/132949071

这篇关于【python】深入探索使用Matplotlib中的plt.legend()添加图例的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/726982

相关文章

Python实现网格交易策略的过程

《Python实现网格交易策略的过程》本文讲解Python网格交易策略,利用ccxt获取加密货币数据及backtrader回测,通过设定网格节点,低买高卖获利,适合震荡行情,下面跟我一起看看我们的第一... 网格交易是一种经典的量化交易策略,其核心思想是在价格上下预设多个“网格”,当价格触发特定网格时执行买

Python标准库之数据压缩和存档的应用详解

《Python标准库之数据压缩和存档的应用详解》在数据处理与存储领域,压缩和存档是提升效率的关键技术,Python标准库提供了一套完整的工具链,下面小编就来和大家简单介绍一下吧... 目录一、核心模块架构与设计哲学二、关键模块深度解析1.tarfile:专业级归档工具2.zipfile:跨平台归档首选3.

使用Python构建智能BAT文件生成器的完美解决方案

《使用Python构建智能BAT文件生成器的完美解决方案》这篇文章主要为大家详细介绍了如何使用wxPython构建一个智能的BAT文件生成器,它不仅能够为Python脚本生成启动脚本,还提供了完整的文... 目录引言运行效果图项目背景与需求分析核心需求技术选型核心功能实现1. 数据库设计2. 界面布局设计3

使用IDEA部署Docker应用指南分享

《使用IDEA部署Docker应用指南分享》本文介绍了使用IDEA部署Docker应用的四步流程:创建Dockerfile、配置IDEADocker连接、设置运行调试环境、构建运行镜像,并强调需准备本... 目录一、创建 dockerfile 配置文件二、配置 IDEA 的 Docker 连接三、配置 Do

Android Paging 分页加载库使用实践

《AndroidPaging分页加载库使用实践》AndroidPaging库是Jetpack组件的一部分,它提供了一套完整的解决方案来处理大型数据集的分页加载,本文将深入探讨Paging库... 目录前言一、Paging 库概述二、Paging 3 核心组件1. PagingSource2. Pager3.

Python进行JSON和Excel文件转换处理指南

《Python进行JSON和Excel文件转换处理指南》在数据交换与系统集成中,JSON与Excel是两种极为常见的数据格式,本文将介绍如何使用Python实现将JSON转换为格式化的Excel文件,... 目录将 jsON 导入为格式化 Excel将 Excel 导出为结构化 JSON处理嵌套 JSON:

Python操作PDF文档的主流库使用指南

《Python操作PDF文档的主流库使用指南》PDF因其跨平台、格式固定的特性成为文档交换的标准,然而,由于其复杂的内部结构,程序化操作PDF一直是个挑战,本文主要为大家整理了Python操作PD... 目录一、 基础操作1.PyPDF2 (及其继任者 pypdf)2.PyMuPDF / fitz3.Fre

python设置环境变量路径实现过程

《python设置环境变量路径实现过程》本文介绍设置Python路径的多种方法:临时设置(Windows用`set`,Linux/macOS用`export`)、永久设置(系统属性或shell配置文件... 目录设置python路径的方法临时设置环境变量(适用于当前会话)永久设置环境变量(Windows系统

python中列表应用和扩展性实用详解

《python中列表应用和扩展性实用详解》文章介绍了Python列表的核心特性:有序数据集合,用[]定义,元素类型可不同,支持迭代、循环、切片,可执行增删改查、排序、推导式及嵌套操作,是常用的数据处理... 目录1、列表定义2、格式3、列表是可迭代对象4、列表的常见操作总结1、列表定义是处理一组有序项目的

python运用requests模拟浏览器发送请求过程

《python运用requests模拟浏览器发送请求过程》模拟浏览器请求可选用requests处理静态内容,selenium应对动态页面,playwright支持高级自动化,设置代理和超时参数,根据需... 目录使用requests库模拟浏览器请求使用selenium自动化浏览器操作使用playwright