OpenCV-42 直方图均匀化

2024-02-18 09:28
文章标签 opencv 42 直方图 均匀

本文主要是介绍OpenCV-42 直方图均匀化,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

目录

一、直方图均匀化原理

二、直方图均匀化在OpenCV中的运用


一、直方图均匀化原理

直方图均匀化是通过拉伸像素强度的分布范围,使得在0~255灰阶上的分布更加均匀,提高图像的对比度。达到改善图像主管视觉效果的目的。对比度较低的图像适合使用直方图均衡化的方法来增强图像细节。

原理

  1. 计算累计直方图
  2. 将累计直方图进行区间转换
  3. 在累计直方图中,概率相近的原始值,会被处理为相同的值 

最初的像素点都在0-7之间,最后我们将其规划到0~255中间。 

二、直方图均匀化在OpenCV中的运用

使用API---eqyalizeHist(src[, dst)

示例代码如下:

import cv2
import numpy as np
import matplotlib.pyplot as plt
cv2.namedWindow("img", cv2.WINDOW_NORMAL)
cv2.resizeWindow("img", 1290, 480)
lena = cv2.imread("beautiful women.png")
gray = cv2.cvtColor(lena, cv2.COLOR_BGR2GRAY)# lena变黑
gray_dark = gray - 40
# lena变亮
gray_bright = gray + 40
cv2.imshow("img", np.hstack((gray, gray_dark, gray_bright)))
# 查看各自的直方图
hist_gray = cv2.calcHist([gray], [0], None, [256], [0, 255])
hist_dark = cv2.calcHist([gray_dark], [0], None, [256], [0, 255])
hist_bright = cv2.calcHist([gray_bright], [0], None, [256], [0, 255])
# 画出直方图
plt.plot(hist_gray, label = "gray")
plt.plot(hist_dark, label = "dark")
plt.plot(hist_bright, label = "bright")
plt.legend()
plt.show()
# 进行均衡化处理
dark_equ = cv2.equalizeHist(gray_dark)
bright_equ = cv2.equalizeHist(gray_bright)
# 查看均衡化的直方图
hist_dark_equ = cv2.calcHist([dark_equ], [0], None, [256], [0, 255])
hist_bright_equ = cv2.calcHist([bright_equ], [0], None, [256], [0, 255])
plt.plot(hist_dark_equ, label = "dark_equ")
plt.plot(hist_bright_equ, label = "bright_equ")
plt.legend()
plt.show()
cv2.imshow("gray_dark", np.hstack((gray_dark, dark_equ)))
cv2.imshow("gray_dark", np.hstack((gray_bright, bright_equ)))cv2.waitKey(0)
cv2.destroyAllWindows()

输出结果如下:

 图像均衡化之前:

图像均衡化之后:

 

直方图均衡化之前:

直方图均衡化之后:

 

这篇关于OpenCV-42 直方图均匀化的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/720730

相关文章

使用Python和OpenCV库实现实时颜色识别系统

《使用Python和OpenCV库实现实时颜色识别系统》:本文主要介绍使用Python和OpenCV库实现的实时颜色识别系统,这个系统能够通过摄像头捕捉视频流,并在视频中指定区域内识别主要颜色(红... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间详解

OpenCV实现实时颜色检测的示例

《OpenCV实现实时颜色检测的示例》本文主要介绍了OpenCV实现实时颜色检测的示例,通过HSV色彩空间转换和色调范围判断实现红黄绿蓝颜色检测,包含视频捕捉、区域标记、颜色分析等功能,具有一定的参考... 目录一、引言二、系统概述三、代码解析1. 导入库2. 颜色识别函数3. 主程序循环四、HSV色彩空间

Python中OpenCV与Matplotlib的图像操作入门指南

《Python中OpenCV与Matplotlib的图像操作入门指南》:本文主要介绍Python中OpenCV与Matplotlib的图像操作指南,本文通过实例代码给大家介绍的非常详细,对大家的学... 目录一、环境准备二、图像的基本操作1. 图像读取、显示与保存 使用OpenCV操作2. 像素级操作3.

C/C++中OpenCV 矩阵运算的实现

《C/C++中OpenCV矩阵运算的实现》本文主要介绍了C/C++中OpenCV矩阵运算的实现,包括基本算术运算(标量与矩阵)、矩阵乘法、转置、逆矩阵、行列式、迹、范数等操作,感兴趣的可以了解一下... 目录矩阵的创建与初始化创建矩阵访问矩阵元素基本的算术运算 ➕➖✖️➗矩阵与标量运算矩阵与矩阵运算 (逐元

C/C++的OpenCV 进行图像梯度提取的几种实现

《C/C++的OpenCV进行图像梯度提取的几种实现》本文主要介绍了C/C++的OpenCV进行图像梯度提取的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录预www.chinasem.cn备知识1. 图像加载与预处理2. Sobel 算子计算 X 和 Y

C/C++和OpenCV实现调用摄像头

《C/C++和OpenCV实现调用摄像头》本文主要介绍了C/C++和OpenCV实现调用摄像头,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录准备工作1. 打开摄像头2. 读取视频帧3. 显示视频帧4. 释放资源5. 获取和设置摄像头属性

c/c++的opencv图像金字塔缩放实现

《c/c++的opencv图像金字塔缩放实现》本文主要介绍了c/c++的opencv图像金字塔缩放实现,通过对原始图像进行连续的下采样或上采样操作,生成一系列不同分辨率的图像,具有一定的参考价值,感兴... 目录图像金字塔简介图像下采样 (cv::pyrDown)图像上采样 (cv::pyrUp)C++ O

c/c++的opencv实现图片膨胀

《c/c++的opencv实现图片膨胀》图像膨胀是形态学操作,通过结构元素扩张亮区填充孔洞、连接断开部分、加粗物体,OpenCV的cv::dilate函数实现该操作,本文就来介绍一下opencv图片... 目录什么是图像膨胀?结构元素 (KerChina编程nel)OpenCV 中的 cv::dilate() 函

qtcreater配置opencv遇到的坑及实践记录

《qtcreater配置opencv遇到的坑及实践记录》我配置opencv不管是按照网上的教程还是deepseek发现都有些问题,下面是我的配置方法以及实践成功的心得,感兴趣的朋友跟随小编一起看看吧... 目录电脑环境下载环境变量配置qmake加入外部库测试配置我配置opencv不管是按照网上的教程还是de

python+OpenCV反投影图像的实现示例详解

《python+OpenCV反投影图像的实现示例详解》:本文主要介绍python+OpenCV反投影图像的实现示例详解,本文通过实例代码图文并茂的形式给大家介绍的非常详细,感兴趣的朋友一起看看吧... 目录一、前言二、什么是反投影图像三、反投影图像的概念四、反向投影的工作原理一、利用反向投影backproj