自适应滤波:维纳滤波器——GSC算法及语音增强

2024-02-18 02:10

本文主要是介绍自适应滤波:维纳滤波器——GSC算法及语音增强,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

作者:桂。

时间:2017-03-26  06:06:44

链接:http://www.cnblogs.com/xingshansi/p/6621185.html 

声明:欢迎被转载,不过记得注明出处哦~


  【读书笔记04】

前言

仍然是西蒙.赫金的《自适应滤波器原理》第四版第二章,首先看到无约束维纳滤波,接着到了一般约束条件的滤波,此处为约束扩展的维纳滤波,全文包括:

  1)背景介绍;

  2)广义旁瓣相消(Generalized Sidelobe Cancellation, GSC)理论推导;

  3)GSC应用——语音阵列信号增强;

内容为自己的学习记录,其中错误之处,还请各位帮忙指正! 

 

一、背景介绍

在一般约束条件的维纳滤波中,有${{\bf{w}}^H}{\bf{s}}\left( {{\theta _0}} \right) = g$的约束条件,即${{\bf{s}}^H}\left( {{\theta _0}} \right){\bf{w}} = g$.如${\bf{s}}\left( {{\theta _0}} \right)$为旋转向量时,希望在$\theta _0$处保留波束—>对应$g_1  = 1$,希望在$\theta_2$处抑制波束—>对应$g_2 = 0$,写成一般形式:

写成更一般的形式:

${{\bf{C}}^H}{\bf{w}} = {\bf{g}}$

假设$\bf{w}$权值个数为M,在一般约束维纳滤波中可以看出:限定条件使得结果更符合预期的效果。假设C为M×L的矩阵:L个线性约束条件。对于M个变量的方程组,对应唯一解最多有M个方程,即:对于L个线性约束来讲,我们仍可以继续利用剩下的M-L个自由度进行约束,使得结果更加符合需求(比如增强某信号、抑制某信号等),这便是GSC的背景。

 

二、GSC理论推导

  A-理论介绍

书中的推导较为繁琐,我们可以从投影空间的角度加以理解,也就是最小二乘结果的矩阵求逆形式,给出简要说明:

对于矩阵A(N×M):

  • 如果A是满列秩(N>=M)对于符合LA=I的矩阵解为:${\bf{L}} = {\left( {{{\bf{A}}^H}{\bf{A}}} \right)^{ - 1}}{{\bf{A}}^H}$;
  • 如果A是满行秩(N<=M)对于符合AR=I的矩阵解为:${\bf{R}} = {{\bf{A}}^H}{\left( {{{\bf{A}}}{\bf{A}^H}} \right)^{ - 1}}$.

对于${{\bf{C}}^H}{\bf{w}} = {\bf{g}}$,得出最优解:

${{\bf{w}}_q} = {\bf{C}}{\left( {{{\bf{C}}^H}{\bf{C}}} \right)^{ - 1}}{\bf{g}}$

记:

${{\bf{w}}_{re}} = {\bf{w}} - {{\bf{w}}_q}$

为了便于对余量${{\bf{w}}_{re}}$进行控制,将C扩展为:[ C | C$_{a}$ ],$\bf{C}_a$的列向量为矩阵C列向量张成空间的正交补空间的基,即:

${\bf{C}}_a^H{\bf{C}} = {\bf{0}}$

分析新的空间特性:

上式有${{\bf{C}}^H}{{\bf{w}}_{re}} = {\bf{0}}$,这就说明只要满足该条件,${{\bf{r}}_e} = {\bf{C}}_a^H{{\bf{w}}_{re}}$就是补空间的余量,如何保证一定有${{\bf{C}}^H}{{\bf{w}}_{re}} = {\bf{0}}$呢?可以将${{{\bf{w}}_{re}}}$写为:${ - {{\bf{C}}_a}{{\bf{w}}_a}}$的形式,之所以添加$-$可能是因为正交补空间可以认为C列向量空间不能表征的成分,我们通常认为这一部分为该丢弃的残差,也因为是残差:${{\bf{C}}_a}$通常被称为阻塞矩阵(取Block之意),很多书籍用$\bf{B}$表示。

 重新给出推导的结果:

${\bf{w}} = {{\bf{w}}_q} - {{\bf{C}}_a}{{\bf{w}}_a}$       s.t. ${{\bf{C}}_a}{{\bf{w}}_q} = {\bf{0}}$

对应结构图为:

简化后可以认为上支、下支:

这是维纳滤波器的典型结构。

  B-阻塞矩阵的选取

阻塞矩阵这一段摘自:秦博雅《基于低复杂度自适应信号处理的波束成形技术研究》p22~23.

大致有以下几种方式:

 

 

 

 

 

 

 

三、阵列信号增强

学了这个GSC怎么应用呢?这里参考一篇07年adaptive beamforming(引用见最后的参考)的例子,简要说明思路,关于阻塞矩阵。

文中结构图:

即:分别利用GSC框架,通过最小互信息实现信号的分离,其中$w_a$、$C_a$即$B$都提前给定,优化$w_{a1}$、$w_{a2}$。

定义互信息:

其中,

在幅度(严格来讲是傅里叶系数幅度)为正态条件下,得到:

给出输出表达式:

并给出准则函数——相关系数的表达式:

其中,

其中相关、互相关无法得到统计信息,仍然可以基于遍历性假设:利用时间换取空间,近似求取。

文中提到引入正则化(regularization)

这个只是优化过程中的限定条件,与GSC框架关系不大,不再补充。

这里在网上找去了一个8通道(channel)的混合语音(两个说话人),利用该算法进行分析,给出主要代码:

主要代码:

MMI_define_var(Xf1,Xf2);
%initialization
W1 = [0 0 0 0.1 0 0 0.2 ];
W2 = [0 2 0 0 0.2 0 0.1 ];
[Wa1,Wa2]=MMI_EstimateWa([W1 W2]');

其中MMI_define_var定义变量:

function MMI_define_var(Xf1,Xf2)global Wq B covX1X1 covX2X2  covX1X2  len;Wq=[1 1 1 1 1 1 1 1]'*1/8;
B=[1 -1 0 0 0 0 0 0 ;0 1 -1 0 0 0 0 0 ;0 0 1 -1 0 0 0 0 ;0 0 0 1 -1 0 0 0 ;0 0 0 0 1 -1 0 0 ;0 0 0 0 0 1 -1 0 ;0 0 0 0 0 0 1 -1 ]';[~,len]=size(Xf2);
XfMean1=mean(Xf1.');
XfMean2=mean(Xf2.');
for i=1:8Xf1(i,:)=Xf1(i,:)-XfMean1(i);Xf2(i,:)=Xf2(i,:)-XfMean2(i);
endcovX1X1=Xf1*Xf1'/len;
covX2X2=Xf2*Xf2'/len;
covX1X2=Xf1*Xf2'/len;
MMI_EstimateWa实现参数估计:
function [Wa1 Wa2]=MMI_EstimateWa(W)
%obtain the Wa
ww=[real(W)' imag(W)']';options = optimset('LargeScale','off','display','off');
[X,fval] = fminunc('MMI_real_imag_objfun',ww,options);
X_real=X(1:14);
X_imag=X(15:28);
Wa1_real=X_real(1:7);
Wa1_imag=X_imag(1:7);
Wa2_real=X_real(8:14);
Wa2_imag=X_imag(8:14);Wa1=Wa1_real+sqrt(-1)*Wa1_imag;
Wa2=Wa2_real+sqrt(-1)*Wa2_imag;
end

对应结果图:

可以听出来:虽然略有杂音,但两个说话人的声音已经实现了分离,GSC框架有效。如果不同说话人声达时间估计准确,迭代算法应用合适,效果会更好,此处主要介绍GSC应用,细节不再琢磨,有兴趣的可以探索探索。

 

参考:

  • K. Kumatani, T. Gehrig, U. Mayer, E. Stoimenov, J. McDonough and M. WÖlfel, "Adaptive Beamforming With a Minimum Mutual Information Criterion," in IEEE Transactions on Audio, Speech, and Language Processing, vol. 15, no. 8, pp. 2527-2541, Nov. 2007.
  • Simon Haykin 《Adaptive Filter Theory Fourth Edition》.

这篇关于自适应滤波:维纳滤波器——GSC算法及语音增强的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!


原文地址:https://blog.csdn.net/weixin_34168700/article/details/86396015
本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.chinasem.cn/article/719723

相关文章

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

全解析CSS Grid 的 auto-fill 和 auto-fit 内容自适应

《全解析CSSGrid的auto-fill和auto-fit内容自适应》:本文主要介绍了全解析CSSGrid的auto-fill和auto-fit内容自适应的相关资料,详细内容请阅读本文,希望能对你有所帮助... css  Grid 的 auto-fill 和 auto-fit/* 父元素 */.gri

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

Python中edge-tts实现便捷语音合成

《Python中edge-tts实现便捷语音合成》edge-tts是一个功能强大的Python库,支持多种语言和声音选项,本文主要介绍了Python中edge-tts实现便捷语音合成,具有一定的参考价... 目录安装与环境设置文本转语音查找音色更改语音参数生成音频与字幕总结edge-tts 是一个功能强大的

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

springboot+dubbo实现时间轮算法

《springboot+dubbo实现时间轮算法》时间轮是一种高效利用线程资源进行批量化调度的算法,本文主要介绍了springboot+dubbo实现时间轮算法,文中通过示例代码介绍的非常详细,对大家... 目录前言一、参数说明二、具体实现1、HashedwheelTimer2、createWheel3、n

SpringBoot实现MD5加盐算法的示例代码

《SpringBoot实现MD5加盐算法的示例代码》加盐算法是一种用于增强密码安全性的技术,本文主要介绍了SpringBoot实现MD5加盐算法的示例代码,文中通过示例代码介绍的非常详细,对大家的学习... 目录一、什么是加盐算法二、如何实现加盐算法2.1 加盐算法代码实现2.2 注册页面中进行密码加盐2.

Java时间轮调度算法的代码实现

《Java时间轮调度算法的代码实现》时间轮是一种高效的定时调度算法,主要用于管理延时任务或周期性任务,它通过一个环形数组(时间轮)和指针来实现,将大量定时任务分摊到固定的时间槽中,极大地降低了时间复杂... 目录1、简述2、时间轮的原理3. 时间轮的实现步骤3.1 定义时间槽3.2 定义时间轮3.3 使用时

使用Python实现文本转语音(TTS)并播放音频

《使用Python实现文本转语音(TTS)并播放音频》在开发涉及语音交互或需要语音提示的应用时,文本转语音(TTS)技术是一个非常实用的工具,下面我们来看看如何使用gTTS和playsound库将文本... 目录什么是 gTTS 和 playsound安装依赖库实现步骤 1. 导入库2. 定义文本和语言 3

讯飞webapi语音识别接口调用示例代码(python)

《讯飞webapi语音识别接口调用示例代码(python)》:本文主要介绍如何使用Python3调用讯飞WebAPI语音识别接口,重点解决了在处理语音识别结果时判断是否为最后一帧的问题,通过运行代... 目录前言一、环境二、引入库三、代码实例四、运行结果五、总结前言基于python3 讯飞webAPI语音