C++ SUNDY算法(BM算法的改进)

2024-02-17 23:32
文章标签 算法 c++ 改进 bm sundy

本文主要是介绍C++ SUNDY算法(BM算法的改进),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

字符串查找算法中,最著名的两个是KMP算法Knuth-Morris-Pratt)和BM算法(Boyer-Moore)。两个算法在最坏情

况下均具有线性的查找时间。BM算法往往比KMP算法快上3-5倍。但是BM算法还不是最快的算法,这里介绍一种比BM算法更快一些的查找算法。

例如我们要在"substringsearchingalgorithm"查找"search"

第一步,把子串与文本左边对齐:

s u b s t r i n g s e a r c h i n g a l g o r i t h m

s e a r c h

结果在第二个字符处发现不匹配,于是要把子串往后移动。

但是该移动多少呢?

最简单的做法是移动一个字符位置;

KMP是利用已经匹配部分的信息来移动;

BM算法是做反向比较,并根据已经匹配的部分来确定移动量。

而SUNDY算法是看紧跟在当前子串之后的那个字符(第一个字符串中的'i')。


显然,不管移动多少,这个字符是肯定要参加下一步的比较的,也就是说,如果下一步匹配到了,这个字符必须在子串内。

所以,可以移动子串,使子串中的最右边的这个字符与它对齐。

现在子串'search'中并不存在'i',则说明可

以直接跳过一大片,从'i'之后的那个字符开始作下一步的比较,如下:

s u b s t r i n g s e a r c h i n g a l g o r i t h m

                s e a r c h

比较的结果,第一个字符就不匹配,再看子串后面的那个字符,是'r',

它在子串中出现在倒数第三位,于是把子串向后移动三位,使两个'r'对齐,如下:

s u b s t r i n g  s e a r c h i n g a l g o r i t h m

                         s e a r c h

这次匹配成功了!回顾整个过程,我们仅仅移动了两次子串就找到了匹配位置,

可以证明,用这个算法,每一步的移动量都比BM算法要大,所以肯定比BM算法更快。


下面是实现代码:

#include <iostream>
#include <string>
using namespace std;void SUNDAY(char *text, char *patt)
{register size_t temp[256];size_t *shift = temp;size_t i, patt_size = strlen(patt), text_size = strlen(text);cout << "size : " << patt_size << endl;for( i=0; i < 256; i++ ){*(shift+i) = patt_size+1;}for( i=0; i < patt_size; i++ ){*(shift + (unsigned char)(*(patt+i))) = patt_size-i;}//shift['s']=6 步,shitf['e']=5 以此类推size_t limit = text_size - patt_size+1;for(i=0; i < limit; i += shift[ text[i+patt_size] ]){if( text[i] == *patt ){char *match_text = text + i + 1;size_t match_size = 1;do{// 输出所有匹配的位置if( match_size == patt_size ){cout << "the NO. is " << i << endl;}}while((*match_text++) == patt[match_size++]);}}cout << endl;
}
int main(void)
{char *text = new char[100];text = "substring searching algorithm search";char *patt = new char[10];patt = "search";SUNDAY(text, patt);return 0;
}



这篇关于C++ SUNDY算法(BM算法的改进)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/719333

相关文章

深入解析C++ 中std::map内存管理

《深入解析C++中std::map内存管理》文章详解C++std::map内存管理,指出clear()仅删除元素可能不释放底层内存,建议用swap()与空map交换以彻底释放,针对指针类型需手动de... 目录1️、基本清空std::map2️、使用 swap 彻底释放内存3️、map 中存储指针类型的对象

C++ STL-string类底层实现过程

《C++STL-string类底层实现过程》本文实现了一个简易的string类,涵盖动态数组存储、深拷贝机制、迭代器支持、容量调整、字符串修改、运算符重载等功能,模拟标准string核心特性,重点强... 目录实现框架一、默认成员函数1.默认构造函数2.构造函数3.拷贝构造函数(重点)4.赋值运算符重载函数

C++ vector越界问题的完整解决方案

《C++vector越界问题的完整解决方案》在C++开发中,std::vector作为最常用的动态数组容器,其便捷性与性能优势使其成为处理可变长度数据的首选,然而,数组越界访问始终是威胁程序稳定性的... 目录引言一、vector越界的底层原理与危害1.1 越界访问的本质原因1.2 越界访问的实际危害二、基

c++日志库log4cplus快速入门小结

《c++日志库log4cplus快速入门小结》文章浏览阅读1.1w次,点赞9次,收藏44次。本文介绍Log4cplus,一种适用于C++的线程安全日志记录API,提供灵活的日志管理和配置控制。文章涵盖... 目录简介日志等级配置文件使用关于初始化使用示例总结参考资料简介log4j 用于Java,log4c

C++归并排序代码实现示例代码

《C++归并排序代码实现示例代码》归并排序将待排序数组分成两个子数组,分别对这两个子数组进行排序,然后将排序好的子数组合并,得到排序后的数组,:本文主要介绍C++归并排序代码实现的相关资料,需要的... 目录1 算法核心思想2 代码实现3 算法时间复杂度1 算法核心思想归并排序是一种高效的排序方式,需要用

C++11范围for初始化列表auto decltype详解

《C++11范围for初始化列表autodecltype详解》C++11引入auto类型推导、decltype类型推断、统一列表初始化、范围for循环及智能指针,提升代码简洁性、类型安全与资源管理效... 目录C++11新特性1. 自动类型推导auto1.1 基本语法2. decltype3. 列表初始化3

C++11右值引用与Lambda表达式的使用

《C++11右值引用与Lambda表达式的使用》C++11引入右值引用,实现移动语义提升性能,支持资源转移与完美转发;同时引入Lambda表达式,简化匿名函数定义,通过捕获列表和参数列表灵活处理变量... 目录C++11新特性右值引用和移动语义左值 / 右值常见的左值和右值移动语义移动构造函数移动复制运算符

C++中detach的作用、使用场景及注意事项

《C++中detach的作用、使用场景及注意事项》关于C++中的detach,它主要涉及多线程编程中的线程管理,理解detach的作用、使用场景以及注意事项,对于写出高效、安全的多线程程序至关重要,下... 目录一、什么是join()?它的作用是什么?类比一下:二、join()的作用总结三、join()怎么

C++中全局变量和局部变量的区别

《C++中全局变量和局部变量的区别》本文主要介绍了C++中全局变量和局部变量的区别,全局变量和局部变量在作用域和生命周期上有显著的区别,下面就来介绍一下,感兴趣的可以了解一下... 目录一、全局变量定义生命周期存储位置代码示例输出二、局部变量定义生命周期存储位置代码示例输出三、全局变量和局部变量的区别作用域

C++中assign函数的使用

《C++中assign函数的使用》在C++标准模板库中,std::list等容器都提供了assign成员函数,它比操作符更灵活,支持多种初始化方式,下面就来介绍一下assign的用法,具有一定的参考价... 目录​1.assign的基本功能​​语法​2. 具体用法示例​​​(1) 填充n个相同值​​(2)