MySQL 插入10万条数据性能分析

2024-02-17 14:36

本文主要是介绍MySQL 插入10万条数据性能分析,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

MySQL 插入10万条数据性能分析

一、背景

笔者想复现一个索引失效的场景,故需要一定规模的数据作支撑,所以需要向数据库中插入大约一百万条数据。那问题就来了,我们应该怎样插入才能使插入的速度最快呢?

为了更加贴合实际,下面的演示只考虑使用 Mybaits 作为 ORM 框架的情况,不使用原生的 JDBC。下面,我们只向数据库中插入十万条数据作为演示。

二、实现

1. 使用 Mybaits 直接插入

Java 代码为:

public void insertByMybatis() {for (int i = 0; i < 100000; i++) {InvoiceOrder invoiceOrder = new InvoiceOrder();invoiceOrder.setOrderId(UUID.randomUUID().toString().replace("-", ""));invoiceOrder.setInvoiceId(UUID.randomUUID().toString().replace("-", ""));invoiceOrder.setInvoiceName("test" + i);invoiceOrder.setInvoiceDate(DateUtil.date().offset(DateField.HOUR_OF_DAY, -i));invoiceOrder.setOrderTime(DateUtil.date().offset(DateField.HOUR_OF_DAY, -i));orderMapper.insertSelective(invoiceOrder);}
}

插入结果:

同步插入10万条数数据

同步插入10万条数据的耗时为 242s

2. 使用 Mybatis 直接插入数据,取消事务自动提交

@Autowired
private DataSourceTransactionManager transactionManager;public void insertByMybatisWithNoTransaction() {DefaultTransactionDefinition def = new DefaultTransactionDefinition();def.setPropagationBehavior(TransactionDefinition.PROPAGATION_REQUIRES_NEW);TransactionStatus status = transactionManager.getTransaction(def);for (int i = 0; i < 100000; i++) {InvoiceOrder invoiceOrder = new InvoiceOrder();invoiceOrder.setOrderId(UUID.randomUUID().toString().replace("-", ""));invoiceOrder.setInvoiceId(UUID.randomUUID().toString().replace("-", ""));invoiceOrder.setInvoiceName("test" + i);invoiceOrder.setInvoiceDate(DateUtil.date().offset(DateField.HOUR_OF_DAY, -i));invoiceOrder.setOrderTime(DateUtil.date().offset(DateField.HOUR_OF_DAY, -i));orderMapper.insertSelective(invoiceOrder);}transactionManager.commit(status);
}

插入结果:

同步插入数据,取消事务自动提交

直接插入数据,并取消事务自动提交,耗时为 28s

3. 使用 Mybatis 批量插入数据

Java 代码为:

/*** Mybatis批量插入*/
public void batchInsertByMybatis() {List<InvoiceOrder> invoiceOrders = new ArrayList<>();for (int i = 0; i < 100000; i++) {InvoiceOrder invoiceOrder = new InvoiceOrder();invoiceOrder.setOrderId(UUID.randomUUID().toString().replace("-", ""));invoiceOrder.setInvoiceId(UUID.randomUUID().toString().replace("-", ""));invoiceOrder.setInvoiceName("test" + i);invoiceOrder.setInvoiceDate(DateUtil.date().offset(DateField.HOUR_OF_DAY, -i));invoiceOrder.setOrderTime(DateUtil.date().offset(DateField.HOUR_OF_DAY, -i));invoiceOrders.add(invoiceOrder);if (i % 1500 == 0) {orderMapper.insertBatch(invoiceOrders);invoiceOrders = new ArrayList<>();}}// 最后插入剩下的数据orderMapper.insertBatch(invoiceOrders);
}

结果:

批量插入10万数据

批量插入10条数据耗时 4s

4. 使用 Mybatis 批量插入数据,取消事务自动提交

@Autowired
private DataSourceTransactionManager transactionManager;public void batchInsertByMybatisWithNoTransaction() {DefaultTransactionDefinition def = new DefaultTransactionDefinition();def.setPropagationBehavior(TransactionDefinition.PROPAGATION_REQUIRES_NEW);TransactionStatus status = transactionManager.getTransaction(def);List<InvoiceOrder> invoiceOrders = new ArrayList<>();for (int i = 0; i < 100000; i++) {InvoiceOrder invoiceOrder = new InvoiceOrder();invoiceOrder.setOrderId(UUID.randomUUID().toString().replace("-", ""));invoiceOrder.setInvoiceId(UUID.randomUUID().toString().replace("-", ""));invoiceOrder.setInvoiceName("test" + i);invoiceOrder.setInvoiceDate(DateUtil.date().offset(DateField.HOUR_OF_DAY, -i));invoiceOrder.setOrderTime(DateUtil.date().offset(DateField.HOUR_OF_DAY, -i));invoiceOrders.add(invoiceOrder);if ( i % 10000 == 0) {orderMapper.insertBatch(invoiceOrders);invoiceOrders = new ArrayList<>();}}// 最后插入剩下的数据orderMapper.insertBatch(invoiceOrders);transactionManager.commit(status);
}

结果为:

批量插入数据并取消事务自动提交

耗时4s,与批量插入自动提交事务方式的耗时相差不大

5. 使用多线程批量插入数据

public void asyncInsertTest() throws InterruptedException {for (int i = 0; i < THREAD_COUNT; i++) {int finalI = i;threadPoolExecutor.submit(new Runnable() {@Overridepublic void run() {List<InvoiceOrder> invoiceOrders = new ArrayList<>();int begin = finalI * 20000;int end = 20000 * (finalI + 1);for (int id = begin; id < end; id++) {InvoiceOrder invoiceOrder = new InvoiceOrder();invoiceOrder.setId((long) id);invoiceOrder.setOrderId(UUID.randomUUID().toString().replace("-", ""));invoiceOrder.setInvoiceId(UUID.randomUUID().toString().replace("-", ""));invoiceOrder.setInvoiceName("test" + id);invoiceOrder.setInvoiceDate(DateUtil.date().offset(DateField.HOUR_OF_DAY, -id));invoiceOrder.setOrderTime(DateUtil.date().offset(DateField.HOUR_OF_DAY, -id));invoiceOrders.add(invoiceOrder);}orderMapper.insertBatch(invoiceOrders);}});}threadPoolExecutor.shutdown();while (!threadPoolExecutor.isTerminated()) {Thread.sleep(100); // 等待线程池中的任务执行完毕}}

结果为:

多线程插入数据

耗时 3s,与同步插入相比,有很大的性能提升,这里的每条线程都是使用批量插入的模式,一次事务提交。

6. 使用 第三方数据库连接池插入数据

SpringBoot 中默认使用的数据库连接池是 Hikari,这里我们换用 Druid 和 c3p0 连接池,同步插入10万条数据。

6.1 使用 Druid 连接池插入数据

Druid 依赖

<dependency><groupId>com.alibaba</groupId><artifactId>druid-spring-boot-starter</artifactId><version>1.2.8</version>
</dependency>

配置 Druid 文件信息

spring:datasource:driver-class-name: com.mysql.cj.jdbc.Driverurl: jdbc:mysql://localhost:3306/test_db?characterEncoding=utf-8&serverTimezone=Hongkong&useSSL=falseusername: rootpassword: ezrealtype: com.alibaba.druid.pool.DruidDataSourceserver:port: 8080

结果如下:

使用Druid连接池插入10条数据

  • 与使用 Hikari 连接池相比,Hikari 耗时 242s,Druid 耗时 246s 两者相差不大;
6.2 使用 c3p0 连接池插入数据

c3p0 依赖

<dependency><groupId>com.alibaba</groupId><artifactId>druid-spring-boot-starter</artifactId><version>1.2.8</version>
</dependency>

配置 c3p0 文件信息

spring:datasource:driver-class-name: com.mysql.cj.jdbc.Driverurl: jdbc:mysql://localhost:3306/test_db?characterEncoding=utf-8&serverTimezone=Hongkong&useSSL=falseusername: rootpassword: ezrealtype: com.alibaba.druid.pool.DruidDataSourceserver:port: 8080

结果为:

c3p0插入10条数据

  • 与使用 Hikari 连接池相比,Hikari 耗时 242s,c3p0 耗时 242s 两者相差不大;

三、结果比较分析

3.1 单次循环插入和批量插入

对比方式 1 和 方式 3,前者是单次循环插入,后者是批量插入,分别耗时 242s 和 4s,显然批量插入的效率高。

这个问题可以分三个方面网络数据库交互事务索引分析:

  1. 网络:客户端每次与数据库交互,都要进行一次 TCP 三次握手和四次挥手,频繁的建立和释放数据库连接增加了数据库负担;
  2. 数据库交互:在建立网络连接后,数据库要进行一系列的准备工作:查询缓存语法分析词法分析、优化器分析、存储引擎执行 SQL;
  3. 事务:每次数据插入操作都会开启一个事务,频繁的开启和提交事务,也会增加数据库的负担;
  4. 索引:如果插入的字段存在对应的二级索引,那么就要在该二级索引上也要添加上对应的数据,涉及到大量的磁盘操作;

对于索引来说,可能会存在页分裂和页合并的情况,比如说插入时数据库的主键不是自增的。

对于单次循环插入,每次都需要重复以上三个方面的内容,非常影响性能;而对于批量插入来说,每次操作大量的数据,减少网络、数据库交互、事务等操作,提高插入的效率;

3.2 事务自动提交分析

对比方式 1 和 方式 2,前者是每次插入就进行一次事务操作,而后者是提前开启事务,等到所有的数据都 insert 后,再提交事务,前者耗时 242s,后者耗时 28s,显然只进行一次事务操作的插入效率高

3.2.1 事务执行流程

回答这个问题之前,我们需要了解一次事务执行的流程,以 insert 操作为例:

  1. 向 buffer pool 中写入数据,将数据写入到 flush 链表中,由后台线程定时同步到磁盘上
  2. 记录 undo log buffer ,数据插入之前,InnoDB 会在 Undo Log 记录对应的 delete 语句,用于在生事务回滚的情况下,将修改操作回滚到插入前的状态,undo log 先写入到 undo log buffer 中,由后台线程定时落盘
  3. 记录 redolog buffer,InnoDB 在 buffer pool 插入数据的同时,会把操作记录写入到 redolog buffer 中;
  4. 提交事务,InnoDB 会把 redo log 从 redolog buffer 写入到磁盘中(顺序写入),此时 redolog 处于 prepare 状态,接着执行器生成这个操作的 binlog 写入磁盘,最后把刚刚 redo log 改为 commit 状态,数据插入成功,这就是所谓的二阶段提交

这里主要涉及到两处内存操作和两处磁盘操作

  • 将 undolog 写入到 undolog buffer 中;

  • 将 redolog 写入到 redolog buffer 中;

  • 在事务提交后,InnoDB 会把 redo log 从 redolog buffer 写入到磁盘中;

  • 将该操作的 binlog 也写入到磁盘中

所以,对于方式1,每一次插入数据都要进行两次的磁盘 IO,然而磁盘的读取速度是非常耗时的,大量的磁盘 IO就会影响插入的性能。如果能够减少大量的磁盘 IO,即减少事务开启的次数,那么就可以大大减少插入的耗时。

3.2.2 事务操作涉及到的锁

涉及到事务就可能会涉及到锁的竞争。一个事务在插入一条记录时需要判断一下插入位置是不是被别的事务加了所谓的 gap lock,如果有的话,插入操作就需要等待,直到拥有 gap lock 的事务释放了锁。

InnoDB 规定,在上述等待过程中,会在内存中生成一个锁结构,表明有事务想在间隙中插入一条新记录,但是现在在等待。所以 InnoDB 就把这种类型的锁名称命名为 Insert Intention Locks ,我们称为插入意向锁

3.3 多线程插入优化

通过并发执行多个插入操作来提高数据插入效率:

  • 并发执行:利用多核处理器的优势,通过多个线程并发执行插入操作,提高系统的吞吐量;
  • 减少锁竞争:多个线程批量插入,类似分段的思想,不同线程只会操作不同的数据段,减少不同线程的锁竞争;

3.4 数据库连接池的选择

至于数据库连接池的选择,这里提供一份大佬写的文章,里面详细比较了常见数据库连接池的性能测试。

这篇关于MySQL 插入10万条数据性能分析的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/718078

相关文章

MySQL MCP 服务器安装配置最佳实践

《MySQLMCP服务器安装配置最佳实践》本文介绍MySQLMCP服务器的安装配置方法,本文结合实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下... 目录mysql MCP 服务器安装配置指南简介功能特点安装方法数据库配置使用MCP Inspector进行调试开发指

mysql中insert into的基本用法和一些示例

《mysql中insertinto的基本用法和一些示例》INSERTINTO用于向MySQL表插入新行,支持单行/多行及部分列插入,下面给大家介绍mysql中insertinto的基本用法和一些示例... 目录基本语法插入单行数据插入多行数据插入部分列的数据插入默认值注意事项在mysql中,INSERT I

一文详解MySQL如何设置自动备份任务

《一文详解MySQL如何设置自动备份任务》设置自动备份任务可以确保你的数据库定期备份,防止数据丢失,下面我们就来详细介绍一下如何使用Bash脚本和Cron任务在Linux系统上设置MySQL数据库的自... 目录1. 编写备份脚本1.1 创建并编辑备份脚本1.2 给予脚本执行权限2. 设置 Cron 任务2

SQL Server修改数据库名及物理数据文件名操作步骤

《SQLServer修改数据库名及物理数据文件名操作步骤》在SQLServer中重命名数据库是一个常见的操作,但需要确保用户具有足够的权限来执行此操作,:本文主要介绍SQLServer修改数据... 目录一、背景介绍二、操作步骤2.1 设置为单用户模式(断开连接)2.2 修改数据库名称2.3 查找逻辑文件名

SQL Server数据库死锁处理超详细攻略

《SQLServer数据库死锁处理超详细攻略》SQLServer作为主流数据库管理系统,在高并发场景下可能面临死锁问题,影响系统性能和稳定性,这篇文章主要给大家介绍了关于SQLServer数据库死... 目录一、引言二、查询 Sqlserver 中造成死锁的 SPID三、用内置函数查询执行信息1. sp_w

canal实现mysql数据同步的详细过程

《canal实现mysql数据同步的详细过程》:本文主要介绍canal实现mysql数据同步的详细过程,本文通过实例图文相结合给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的... 目录1、canal下载2、mysql同步用户创建和授权3、canal admin安装和启动4、canal

SQL中JOIN操作的条件使用总结与实践

《SQL中JOIN操作的条件使用总结与实践》在SQL查询中,JOIN操作是多表关联的核心工具,本文将从原理,场景和最佳实践三个方面总结JOIN条件的使用规则,希望可以帮助开发者精准控制查询逻辑... 目录一、ON与WHERE的本质区别二、场景化条件使用规则三、最佳实践建议1.优先使用ON条件2.WHERE用

MySQL存储过程之循环遍历查询的结果集详解

《MySQL存储过程之循环遍历查询的结果集详解》:本文主要介绍MySQL存储过程之循环遍历查询的结果集,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录前言1. 表结构2. 存储过程3. 关于存储过程的SQL补充总结前言近来碰到这样一个问题:在生产上导入的数据发现

MySQL 衍生表(Derived Tables)的使用

《MySQL衍生表(DerivedTables)的使用》本文主要介绍了MySQL衍生表(DerivedTables)的使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学... 目录一、衍生表简介1.1 衍生表基本用法1.2 自定义列名1.3 衍生表的局限在SQL的查询语句select

MySQL 横向衍生表(Lateral Derived Tables)的实现

《MySQL横向衍生表(LateralDerivedTables)的实现》横向衍生表适用于在需要通过子查询获取中间结果集的场景,相对于普通衍生表,横向衍生表可以引用在其之前出现过的表名,本文就来... 目录一、横向衍生表用法示例1.1 用法示例1.2 使用建议前面我们介绍过mysql中的衍生表(From子句