root MUSIC 算法补充说明

2024-02-17 09:12
文章标签 算法 说明 补充 music

本文主要是介绍root MUSIC 算法补充说明,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!


  这篇笔记是上一篇关于 root MUSIC 笔记的补充。

多项式求根

  要理解 root MUSIC 算法,需要理解多项式求根的相关知识。给定多项式 P ( x ) P(x) P(x)
P ( x ) = a 0 + a 1 x + ⋯ + a n x n P(x) = a_0 + a_1 x + \cdots + a_n x^n P(x)=a0+a1x++anxn
容易看出 P ( x ) P(x) P(x) 中只有一个未知数 x x x,且未知数的最高次数为 n n n,因此称 P ( x ) P(x) P(x) 为一元 n n n 次多项式,同时系数 { a i ∈ C : i = 0 , ⋯ , n } \{a_i\in\mathbb{C}:i = 0,\cdots, n\} {aiC:i=0,,n}。而多项式求根就是求得一元 n n n 次方程式 P ( x ) = 0 P(x)=0 P(x)=0 的解,这个解被称作根或者零点。
  在进行后续的讨论前,还需要清楚,根据代数基本定理, n n n 次复系数多项式方程在复数域内有且只有 n n n 个根(这里的重根按重数计算)。

root MUSIC 算法原理

  root MUSIC 算法是 MUSIC 算法的一种多项式求根形式。回忆一下,传统 MUSIC 算法利用了噪声子空间矩阵 U n \mathbf{U}_n Un 和搜索方向矢量 a ( θ ) \mathbf{a}(\theta) a(θ) 来构造空间谱:
P ( θ ) = 1 a H ( θ ) U n U n H a ( θ ) a ( θ ) = [ 1 , e − j 2 π d sin ⁡ θ / λ , ⋯ , e − j 2 π ( M − 1 ) d sin ⁡ θ / λ ] T P(\theta) = \frac{1}{\mathbf{a}^H(\theta)\mathbf{U}_n\mathbf{U}^H_n\mathbf{a}(\theta)} \\ \mathbf{a}(\theta) = \left[1,e^{-\mathrm{j}2\pi d \sin \theta/\lambda},\cdots,e^{-\mathrm{j}2\pi(M-1) d \sin \theta/\lambda}\right]^T P(θ)=aH(θ)UnUnHa(θ)1a(θ)=[1,ej2πdsinθ/λ,,ej2π(M1)dsinθ/λ]T
{ θ = θ k : k = 1 , ⋯ , K } \{\theta = \theta_k:k = 1,\cdots,K\} {θ=θk:k=1,,K} P ( θ ) P(\theta) P(θ) 将产生峰值,换句话说此时 P − 1 ( θ ) = 0 P^{-1}(\theta)=0 P1(θ)=0
  在接下来的讨论中,我们令 P − 1 ( θ ) = a H ( θ ) G a ( θ ) P^{-1}(\theta) = \mathbf{a}^H(\theta)\mathbf{G}\mathbf{a}(\theta) P1(θ)=aH(θ)Ga(θ),此时我们可以知道,MUSIC 算法满足 G ≜ U n U n H \mathbf{G} \triangleq \mathbf{U}_n\mathbf{U}^H_n GUnUnH,而 Capon 算法满足 G ≜ R − 1 \mathbf{G} \triangleq \mathbf{R}^{-1} GR1。需要注意的是无论是 MUSIC 算法还是 Capon 算法, G \mathbf{G} G 均是 Hermitian 矩阵。
  令 ω = − 2 π d sin ⁡ θ / λ \omega = -2\pi d \sin\theta/\lambda ω=2πdsinθ/λ 以及 z = e j ω z = e^{\mathrm{j}\omega} z=ejω,我们将会得到:
a ( z ) = [ 1 , z , z 2 , ⋯ , z M − 1 ] T = a ( θ ) P − 1 ( z ) = a H ( z ) G a ( z ) = P − 1 ( θ ) \begin{aligned} \mathbf{a}(z) &= [1,z,z^{2},\cdots,z^{M-1}]^T = \mathbf{a}(\theta) \\ P^{-1}(z) &= \mathbf{a}^H(z)\mathbf{G}\mathbf{a}(z) = P^{-1}(\theta) \end{aligned} a(z)P1(z)=[1,z,z2,,zM1]T=a(θ)=aH(z)Ga(z)=P1(θ)
接下来我们展开 P − 1 ( z ) P^{-1}(z) P1(z)
P − 1 ( z ) = a H ( z ) G a ( z ) = [ 1 , z ∗ , ( z ∗ ) 2 , ⋯ , ( z ∗ ) M − 1 ] G [ 1 , z , z 2 , ⋯ , z M − 1 ] T = [ 1 , z − 1 , z − 2 , ⋯ , z − M + 1 ] G [ 1 , z , z 2 , ⋯ , z M − 1 ] T = ∑ m = 0 M − 1 ∑ n = 0 M − 1 z − m G [ m , n ] z n = ∑ m = 0 M − 1 ∑ n = 0 M − 1 z n − m G [ m , n ] = ∑ p = − M + 1 M − 1 a p z − p \begin{aligned} P^{-1}(z) &= \mathbf{a}^H(z)\mathbf{G}\mathbf{a}(z) \\ &= [1,z^{*},(z^{*})^2,\cdots,(z^*)^{M-1}] \mathbf{G} [1,z,z^{2},\cdots,z^{M-1}]^T \\ &= [1,z^{-1},z^{-2},\cdots,z^{-M+1}] \mathbf{G} [1,z,z^{2},\cdots,z^{M-1}]^T \\ &= \sum_{m = 0}^{M-1} \sum_{n=0}^{M-1} z^{-m} \mathbf{G}_{[m,n]} z^{n} \\ &= \sum_{m = 0}^{M-1} \sum_{n=0}^{M-1} z^{n-m} \mathbf{G}_{[m,n]} \\ &=\sum_{p=-M+1}^{M-1}a_p z^{-p} \end{aligned} P1(z)=aH(z)Ga(z)=[1,z,(z)2,,(z)M1]G[1,z,z2,,zM1]T=[1,z1,z2,,zM+1]G[1,z,z2,,zM1]T=m=0M1n=0M1zmG[m,n]zn=m=0M1n=0M1znmG[m,n]=p=M+1M1apzp
其中 G [ m , n ] \mathbf{G}_{[m,n]} G[m,n] 表示矩阵 G \mathbf{G} G 的第 m m m 行第 n n n 列元素, a p a_p ap 表示矩阵 G \mathbf{G} G 的第 p p p 条对角线的求和:
a p ≜ ∑ m − n = p G [ m , n ] a_p \triangleq \sum_{m-n = p} \mathbf{G}_{[m,n]} apmn=pG[m,n]
  到这里我们已经可以看出,传统 MUSIC 算法对 P ( θ ) P(\theta) P(θ) 求峰值,其实等价于对 P − 1 ( z ) P^{-1}(z) P1(z) 求根,为了方便大家的理解,我们令 M = 3 M=3 M=3,此时会得到一条简单的式子:
P − 1 ( z ) = a 2 z − 2 + a 1 z − 1 + a 0 z 0 + a − 1 z 1 + a − 2 z 2 P^{-1}(z) = a_{2}z^{-2}+a_{1}z^{-1} + a_{0}z^{0} + a_{-1}z^{1} + a_{-2}z^{2} P1(z)=a2z2+a1z1+a0z0+a1z1+a2z2
可以看出,其实 P − 1 ( θ ) P^{-1}(\theta) P1(θ) 是一个 2 M − 1 = 5 2M-1 = 5 2M1=5 项的多项式,但还存在一个问题, P − 1 ( θ ) P^{-1}(\theta) P1(θ) 中存在负整数次数,我们令 P − 1 ( z ) z M − 1 P^{-1}(z)z^{M-1} P1(z)zM1 将负整数次数消除即可,操作前后,求根的结果是一样的,因此我们可以说 P − 1 ( z ) z M − 1 P^{-1}(z)z^{M-1} P1(z)zM1 是一个一元的 2 M − 1 2M-1 2M1 项的 2 M − 2 2M-2 2M2 次的多项式。更进一步地,我们可以说求解 P − 1 ( z ) z M − 1 = 0 P^{-1}(z)z^{M-1}=0 P1(z)zM1=0 将会得到 2 M − 2 2M-2 2M2 个根,从已知条件我们知道,其中 K K K 个根必定是 e j ω k e^{\mathrm{j}\omega_k} ejωk e j ω k e^{\mathrm{j}\omega_k} ejωk 的幅值是 1 1 1,因此该 K K K 点在单位圆上),在这里 ω k = − 2 π d sin ⁡ θ k / λ \omega_k = -2\pi d \sin\theta_k/\lambda ωk=2πdsinθk/λ
  总结一下,MUSIC 算法的谱峰搜索操作等价于对方程式 P − 1 ( z ) z M − 1 = 0 P^{-1}(z)z^{M-1}=0 P1(z)zM1=0 求根,root MUSIC 算法所做的,就是利用 G \mathbf{G} G 的多条对角线求和得到对应的多项式系数,从而求解得 2 M − 2 2M-2 2M2 个根,接着筛选得到合适的 K K K 个根 z k z_k zk,再通过 z k z_k zk 推导得到原先的 θ k \theta_k θk

如何从 2 M − 2 2M-2 2M2 个根中确定 K K K 个根

  那么如何从 2 M − 2 2M-2 2M2 个根中确定 K K K 个根?这个问题大部分的论文和博客都一笔带过了。从前面的讨论可知,多项式系数是由 G \mathbf{G} G 的多条对角线求和得到,同时 G \mathbf{G} G 是 Hermitian 矩阵,因此以下式子可以得到:
a p = a − p ∗ a_p = a_{-p}^* ap=ap
这个等式意味着在 2 M − 1 2M-1 2M1 个系数 { a p : p = − M + 1 , ⋯ , M − 1 } \{a_p:p=-M+1,\cdots,M-1\} {ap:p=M+1,,M1} 中,前 M − 1 M-1 M1 个和后 M − 1 M-1 M1 个系数是前后共轭对称,同时正中间的系数是实数。
  我们继续假设 M = 3 M=3 M=3 P − 1 ( z ) = 0 P^{-1}(z)=0 P1(z)=0 可以进一步表示如下:
P − 1 ( z ) = a 2 z − 2 + a 1 z − 1 + a 0 + a 1 ∗ z 1 + a 2 ∗ z 2 = 0 P^{-1}(z) = a_{2}z^{-2}+a_{1}z^{-1} + a_{0} + a_{1}^*z^{1} + a_{2}^*z^{2}=0 P1(z)=a2z2+a1z1+a0+a1z1+a2z2=0
  如此我们分析 P − 1 ( 1 / z ∗ ) P^{-1}(1/z^*) P1(1/z),可得:
P − 1 ( 1 / z ∗ ) = a 2 ( z ∗ ) 2 + a 1 ( z ∗ ) 1 + a 0 + a 1 ∗ ( z ∗ ) − 1 + a 2 ∗ ( z ∗ ) − 2 = [ P − 1 ( z ) ] ∗ = P − 1 ( z ) = 0 \begin{aligned} P^{-1}(1/z^*) &= a_{2}(z^*)^{2}+a_{1}(z^*)^{1} + a_{0} + a_{1}^*(z^*)^{-1} + a_{2}^*(z^*)^{-2} \\ &=[P^{-1}(z)]^* = P^{-1}(z) = 0 \end{aligned} P1(1/z)=a2(z)2+a1(z)1+a0+a1(z)1+a2(z)2=[P1(z)]=P1(z)=0
这意味着假若 z 1 = ρ e j φ z_1 = \rho e^{\mathrm{j}\varphi} z1=ρejφ P − 1 ( z ) = 0 P^{-1}(z)=0 P1(z)=0 的根,那么 z 2 = 1 / z 1 ∗ = 1 / ρ e j φ z_2 = 1/z_1^* = 1/\rho e^{\mathrm{j}\varphi} z2=1/z1=1/ρejφ 同样是 P − 1 ( z ) = 0 P^{-1}(z)=0 P1(z)=0 的根。观察 z 1 z_1 z1 z 2 z_2 z2 在复平面的位置,将会观察得到 z 1 z_1 z1 z 2 z_2 z2 是关于单位圆有一个类似对称的关系;简单来说,这个现象是因为 z 1 z_1 z1 z 2 z_2 z2 是幅值互为倒数而相位相等的关系,因此它们就像是关于 e j φ e^{\mathrm{j}\varphi} ejφ 对称一样( e j φ e^{\mathrm{j}\varphi} ejφ 的幅值是 1 1 1,因此该点在单位圆上)。
  综上所述,通过 P − 1 ( z ) P^{-1}(z) P1(z) 得到 2 M − 2 2M-2 2M2 个根,它们是关于单位圆对称的 M − 1 M-1 M1 对根,因此一定有 K K K 对根在单位圆附近,所以我们只需要从 2 M − 2 2M-2 2M2 个根中找 M − 1 M-1 M1 个处于单位圆内的根(找 M − 1 M-1 M1 个处于单位圆外的根同样是可以的,因为角度信息其实只存在于 z k z_k zk 的相位中,与幅值无关),最后确定最接近单位圆的 K K K 个根就可以确定 z k z_k zk

从复数域上观察 2 M − 2 2M-2 2M2 个根的分布

  我们从实验中进一步观察 2 M − 2 2M-2 2M2 个根的分布,matlab 代码实现如下:

clear; close all; clc;%% Parameters
lambda     = 3e8/1e9;         % wavelength, c/f
d          = lambda/4;        % distance between sensors
theta      = [10,20];         % true DoAs, 1 times K vector
theta      = sort(theta);
M          = 16;              % # of sensors
T          = 500;             % # of snapshots
K          = length(theta);   % # of signals
noise_flag = 1;
SNR        = 0;               % signal-to-noise ratio%% Signals
S = exp(1j*2*pi*randn(K,T)); % signal matrix
A = exp(-1j*(0:M-1)'*2*pi*d/lambda*sind(theta)); % steering vector matrix
N = noise_flag.*sqrt(10.^(-SNR/10))*(1/sqrt(2))*(randn(M,T)+1j*randn(M,T)); % noise matrix
X = A*S+N; % received matrix
R = X*X'/T; % covariance matrix%% DoA:root-MUSIC
[U,~] = svd(R); % SVD
Un = U(:, K+1:end); % noise subspace matrix
Gn = Un*Un';
coe = arrayfun(@(i) sum(diag(Gn, M-i)),(1:2*M-1));
r = roots(coe); % 2M-2 roots%% plot
dis = sort(abs(r)-1);
disp(dis);
cnt = sum(dis<0);
disp(cnt); % 记录单位圆内的根个数% 提取实部和虚部
realPart = real(r);
imaginaryPart = imag(r);% 绘制复平面
figure;
scatter(realPart, imaginaryPart, 'filled');
hold on;% 绘制单位圆
theta = linspace(0, 2*pi, 100);
unitCircleReal = cos(theta);
unitCircleImag = sin(theta);
plot(unitCircleReal, unitCircleImag, 'r--', 'LineWidth', 1);xlabel('实部');
ylabel('虚部');
title('复平面上的复数点和单位圆');
grid on;
box on;%% find K roots
r = r(abs(r)<1);
[~, idx] = sort(abs(abs(r)-1));
z = angle(r(idx));
theta = sort(asin(-z(1:K)/2/pi/d*lambda)/pi*180).';

  设 M = 16 M=16 M=16 K = 2 K=2 K=2,根的分布如下图所示,可以看到 2 M − 2 = 30 2M-2 = 30 2M2=30 个根,其中 2 K = 4 2K=4 2K=4 个接近单位圆的根对应着估计角度:
复平面上的复数点和单位圆

这篇关于root MUSIC 算法补充说明的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/717328

相关文章

Linux join命令的使用及说明

《Linuxjoin命令的使用及说明》`join`命令用于在Linux中按字段将两个文件进行连接,类似于SQL的JOIN,它需要两个文件按用于匹配的字段排序,并且第一个文件的换行符必须是LF,`jo... 目录一. 基本语法二. 数据准备三. 指定文件的连接key四.-a输出指定文件的所有行五.-o指定输出

深入理解Mysql OnlineDDL的算法

《深入理解MysqlOnlineDDL的算法》本文主要介绍了讲解MysqlOnlineDDL的算法,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小... 目录一、Online DDL 是什么?二、Online DDL 的三种主要算法2.1COPY(复制法)

Redis中Hash从使用过程到原理说明

《Redis中Hash从使用过程到原理说明》RedisHash结构用于存储字段-值对,适合对象数据,支持HSET、HGET等命令,采用ziplist或hashtable编码,通过渐进式rehash优化... 目录一、开篇:Hash就像超市的货架二、Hash的基本使用1. 常用命令示例2. Java操作示例三

Redis中Set结构使用过程与原理说明

《Redis中Set结构使用过程与原理说明》本文解析了RedisSet数据结构,涵盖其基本操作(如添加、查找)、集合运算(交并差)、底层实现(intset与hashtable自动切换机制)、典型应用场... 目录开篇:从购物车到Redis Set一、Redis Set的基本操作1.1 编程常用命令1.2 集

Python sys模块的使用及说明

《Pythonsys模块的使用及说明》Pythonsys模块是核心工具,用于解释器交互与运行时控制,涵盖命令行参数处理、路径修改、强制退出、I/O重定向、系统信息获取等功能,适用于脚本开发与调试,需... 目录python sys 模块详解常用功能与代码示例获取命令行参数修改模块搜索路径强制退出程序标准输入

MySQL之复合查询使用及说明

《MySQL之复合查询使用及说明》文章讲解了SQL复合查询中emp、dept、salgrade三张表的使用,涵盖多表连接、自连接、子查询(单行/多行/多列)及合并查询(UNION/UNIONALL)等... 目录复合查询基本查询回顾多表查询笛卡尔积自连接子查询单行子查询多行子查询多列子查询在from子句中使

Redis中哨兵机制和集群的区别及说明

《Redis中哨兵机制和集群的区别及说明》Redis哨兵通过主从复制实现高可用,适用于中小规模数据;集群采用分布式分片,支持动态扩展,适合大规模数据,哨兵管理简单但扩展性弱,集群性能更强但架构复杂,根... 目录一、架构设计与节点角色1. 哨兵机制(Sentinel)2. 集群(Cluster)二、数据分片

Springboot项目构建时各种依赖详细介绍与依赖关系说明详解

《Springboot项目构建时各种依赖详细介绍与依赖关系说明详解》SpringBoot通过spring-boot-dependencies统一依赖版本管理,spring-boot-starter-w... 目录一、spring-boot-dependencies1.简介2. 内容概览3.核心内容结构4.

redis和redission分布式锁原理及区别说明

《redis和redission分布式锁原理及区别说明》文章对比了synchronized、乐观锁、Redis分布式锁及Redission锁的原理与区别,指出在集群环境下synchronized失效,... 目录Redis和redission分布式锁原理及区别1、有的同伴想到了synchronized关键字

MySQL 临时表创建与使用详细说明

《MySQL临时表创建与使用详细说明》MySQL临时表是存储在内存或磁盘的临时数据表,会话结束时自动销毁,适合存储中间计算结果或临时数据集,其名称以#开头(如#TempTable),本文给大家介绍M... 目录mysql 临时表详细说明1.定义2.核心特性3.创建与使用4.典型应用场景5.生命周期管理6.注