作物模型狂奔:WOFOST(PCSE) 数据同化思路

2024-02-17 06:28

本文主要是介绍作物模型狂奔:WOFOST(PCSE) 数据同化思路,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

去B吧,这里没图

整体思路:PCSE -》 敏感性分析 -》调参 -》同化

0、准备工作

0.0 电脑环境

我用的Win10啦,Linux、Mac可能得自己再去微调一下。

0.1 Python IDE

我用的Pycharm,个人感觉最好使的IDE,没有之一。

Python 解释器随便装个咯,我用的 Python 3.10 版本。

对于 Python,我其实也是个小白,只会写些小脚本,哈哈哈哈哈。

1、核心依赖包

1.1 PCSE

Wofost 模型Python版本

1.2 SALib

敏感性分析用的包

1.3 SPOTPY

参数优化包,算法很多,我用的SA

2、编码思路

2.1 敏感性分析

目标变量 地上部生物量:TAGP;最大叶面积指数:LAIMAX;器官重:TWSO;
target_variable = run_details.target_variable

敏感度分析方法 efast; sobol

sa_method = run_details.sa_method

模型类别 限水:WLP; 潜在:PP

run_type = run_details.run_type

模型类别 作物:crop; 作物&水:cropAndWater

params_type = run_details.params_type

为每个标量参数确定一个合理的区间

problems_parameters = pd.read_excel(params_dir / f"sensitivity_analysis_parameters_{params_type}.xlsx")
problem = {
‘num_vars’: len(problems_parameters),
‘names’: problems_parameters[‘name’].tolist(),
‘bounds’: problems_parameters[[‘low’, ‘up’]].values.tolist()
}

随机数种子

seed = 2000

二阶

calc_second_order = True

样本数

nsamples = 256
print(“\n================ 参数抽样开始 ================\n”)
st = datetime.datetime.now().timestamp()

生成抽样参数集

paramsets = None

efast

nsamples = 65 * len(problems_parameters)
paramsets = fast_sampler.sample(problem, nsamples, seed=seed)

保存参数集

paramsets_df = pd.DataFrame(paramsets)
paramsets_df.columns = problem[‘names’]
et = datetime.datetime.now().timestamp()
print(f"\n================ 生成参数集结束 {et-st}s ================\n")

开并行狂奔

target_results = []
with tqdm(total=len(paramsets)) as pbar:
# cpu核数进程池
with mp.Pool(mp.cpu_count()) as pool:
# 并行执行
for result in pool.imap(run_wofost_partial, paramsets):
target_results.append(result)
pbar.update()

et = datetime.datetime.now().timestamp()
print(f"\n================ 执行模拟结束 {et-st}s ================\n")

敏感性分析

Si = fast.analyze(problem, target_results, seed=seed)

2.2 调参

话不多说,直接模拟退火

初始值用的参数默认值,然后上下波动优化

初始化代价函数计算器

objfunc_calculator = ObjectiveFunctionCalculator()

待优化参数边界

lowers, uppers, steps, defaults = [], [], [], []
defaults = [22.8, 0.00406, 525, 962, 24.64, 0.455]
for key, default, fluctuate in tuning_parameters:
lowers.append(default * (1 - fluctuate))
uppers.append(default * (1 + fluctuate))
steps.append(default * 2 * fluctuate / step_times)

参数初始位置

firstguess = defaults
sa = SA(func=objfunc_calculator, x0=firstguess, T_max=100, T_min=1e-7, L=1000, max_stay_counter=5, lb=lowers, ub=uppers)
best_x, best_y = sa.run()

2.3 数据同化

这里用的ENKF同化叶面积指数。

定义观测数据集变量

observations_for_DA = [(row[‘day’].date(), {‘LAI’: (row[‘LAI’], std_lai[index])}) for index, row in df_observation_LAI.iterrows()]

初始化了 WOFOST 模型的集合。

for i in range(ensemble_size):
for par, distr in override_parameters.items():
p.set_override(par, distr[i])
member = Wofost72_WLP_FD(p, weatherdataprovider, agromanagement)
ensemble.append(member)

每个可用的观测值重复同化步骤

for i in range(0, len(observations_for_DA)):
# 模型狂奔
da_enkf_single(i)

最后,我们可以使用 run_till_terminate() 调用运行 WOFOST 集合直到生长季节结束。

for member in ensemble:
member.run_till_terminate()

欢迎各位道友关注、留言、私聊、交流病情。

去B站讨论吧,平常不登录CSDN

挂个小广告不会太过份吧~

需要指导的话,那就得让我挣点零花咯,嘿嘿。PS:不说虚的,程序狂奔才是最重要的。

【闲鱼】https://m.tb.cn/h.5ttgPfa?tk=ue5dW9B3RMm HU9046 「我在闲鱼发布了【wofost python版本 pcse代码 指导】」

这篇关于作物模型狂奔:WOFOST(PCSE) 数据同化思路的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/716933

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Java将各种数据写入Excel表格的操作示例

《使用Java将各种数据写入Excel表格的操作示例》在数据处理与管理领域,Excel凭借其强大的功能和广泛的应用,成为了数据存储与展示的重要工具,在Java开发过程中,常常需要将不同类型的数据,本文... 目录前言安装免费Java库1. 写入文本、或数值到 Excel单元格2. 写入数组到 Excel表格

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处

如何使用 Python 读取 Excel 数据

《如何使用Python读取Excel数据》:本文主要介绍使用Python读取Excel数据的详细教程,通过pandas和openpyxl,你可以轻松读取Excel文件,并进行各种数据处理操... 目录使用 python 读取 Excel 数据的详细教程1. 安装必要的依赖2. 读取 Excel 文件3. 读

Spring 请求之传递 JSON 数据的操作方法

《Spring请求之传递JSON数据的操作方法》JSON就是一种数据格式,有自己的格式和语法,使用文本表示一个对象或数组的信息,因此JSON本质是字符串,主要负责在不同的语言中数据传递和交换,这... 目录jsON 概念JSON 语法JSON 的语法JSON 的两种结构JSON 字符串和 Java 对象互转

C++如何通过Qt反射机制实现数据类序列化

《C++如何通过Qt反射机制实现数据类序列化》在C++工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作,所以本文就来聊聊C++如何通过Qt反射机制实现数据类序列化吧... 目录设计预期设计思路代码实现使用方法在 C++ 工程中经常需要使用数据类,并对数据类进行存储、打印、调试等操作。由于数据类

SpringBoot使用GZIP压缩反回数据问题

《SpringBoot使用GZIP压缩反回数据问题》:本文主要介绍SpringBoot使用GZIP压缩反回数据问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录SpringBoot使用GZIP压缩反回数据1、初识gzip2、gzip是什么,可以干什么?3、Spr