足球大数据预测实战之高胜率盈亏条件验证及优化算法

本文主要是介绍足球大数据预测实战之高胜率盈亏条件验证及优化算法,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

上周接到一位老用户,之前为他做过数据验证,给出了组合条件下的胜率回查,结果有些难看啊。这期主要介绍常用人工智能算法中在足球预测中的应用,以及数据验证后的实际效果。

由上图为用户依据条件查证后的比赛场次和概率统计。可以看出,在均投时并不理想,在大数据回查下并没有实质作用。

上图是我提供的一种条件组合所得到的比赛场次和概率

因为一直保持联系,他平时也咨询我一些模型算法方面的用途和意义,当他问到我能否从我这里购买高胜率条件组合时,我谢绝了,这是断了我的工作啊,此后聊天了解到这位用户是新人,平时喜欢购买些推荐,都不靠谱亏了不少,之前的条件组合是在别人那里买的。还是希望大家正确看待足球足彩,正如中国体育彩票的友情提醒“购彩有节制,请理性投注”,但是好多人却难以控制。可能是同情心,也可能是不想他新人入坑。告知了他几个条件,这两天他很高兴,说得相信科学数据。不管你是把中国体育彩票当做投资也好,娱乐也好,都要量力而行,管好自己,不要影响到自己的生活这才是正确的。

1. 决策树
决策树(Decision Tree)是在已知各种情况发生概率的基础上,通过构成决策树来求取净现值的期望值大于等于零的概率,评价项目风险,判断其可行性的决策分析方法,是直观运用概率分析的一种图解法。由于这种决策分支画成图形很像一棵树的枝干,故称决策树。在机器学习中,决策树是一个预测模型,他代表的是对象属性与对象值之间的一种映射关系。
进行足球胜平负或者进球数等预测时需要根据一些特征(条件)进行分类,每个节点当做一个条件,通过判断,将特征分为符合与不符合两类,一直提问最终得到集合。根据这棵树上的求解集合,将新的场次数据条件划分到合适的叶子上从而得到最优解。如果条件设置过多,可能得到的叶子少而不可用。如果条件设置少,存在预测结果指向性不强大特点。通常设置迭代层级时,需要人工调整。

2. 随机森林
它是决策树的升级版,包含多个决策树的分类器,输出的类别是由个别树输出的类别的众数而定。随机森林的优点有也比较多:它可以产生高准确度的分类器;可以处理大量的输入变数;可以在决定类别时,评估变数的重要性;可以在内部对于一般化后的误差产生不偏差的估计;可以估计遗失的资料,并且如果有很大一部分的资料遗失,仍可以维持准确度;对于不平衡的分类资料集来说,它可以平衡误差;学习过程很快。
在足球胜平负预测中,容易出现决策树预测相同的问题。

3. 逻辑回归
逻辑回归又称logistic回归分析,是一种广义的线性回归分析模型,常用于数据挖掘,疾病自动诊断,经济预测等领域。逻辑回归的自变量可以是连续,也可以是分类,主要是计算出它的权重,了解到底哪些条件是重要因素。
足球预测时容易导致过拟合,即容易将低赔的划分为正路,找不到冷门等现象。

4. 支持向量机SVM
支持向量机(Support Vector Machine, SVM)是一类按监督学习(supervised learning)方式对数据进行二元分类的广义线性分类器(generalized linear classifier),其决策边界是对学习样本求解的最大边距超平面(maximum-margin hyperplane)。SVM使用铰链损失函数(hinge loss)计算经验风险(empirical risk)并在求解系统中加入了正则化项以优化结构风险(structural risk),是一个具有稀疏性和稳健性的分类器  。SVM可以通过核方法(kernel method)进行非线性分类,是常见的核学习(kernel learning)方法之一。
足球预测时容易产生指向性不强等现象。

5. 朴素贝叶斯
朴素贝叶斯法(Naive Bayes model)是基于贝叶斯定理与特征条件独立假设的分类方法。贝叶斯方法是以贝叶斯原理为基础,使用概率统计的知识对样本数据集进行分类。由于其有着坚实的数学基础,贝叶斯分类算法的误判率是很低的。贝叶斯方法的特点是结合先验概率和后验概率,即避免了只使用先验概率的主观偏见,也避免了单独使用样本信息的过拟合现象。贝叶斯分类算法在数据集较大的情况下表现出较高的准确率,同时算法本身也比较简单。
6. K近邻
K最近邻(k-Nearest Neighbor,KNN)分类算法,是一个理论上比较成熟的方法,也是最简单的机器学习算法之一。该方法的思路是:在特征空间中,如果一个样本附近的k个最近(即特征空间中最邻近)样本的大多数属于某一个类别,则该样本也属于这个类别。
足球预测时容易产生指向性不强等现象。

7. K均值聚类
k均值聚类算法(k-means clustering algorithm)是一种迭代求解的聚类分析算法,其步骤是,预将数据分为K组,则随机选取K个对象作为初始的聚类中心,然后计算每个对象与各个种子聚类中心之间的距离,把每个对象分配给距离它最近的聚类中心。聚类中心以及分配给它们的对象就代表一个聚类。每分配一个样本,聚类的聚类中心会根据聚类中现有的对象被重新计算。这个过程将不断重复直到满足某个终止条件。终止条件可以是没有(或最小数目)对象被重新分配给不同的聚类,没有(或最小数目)聚类中心再发生变化,误差平方和局部最小。
足球预测时容易产生指向性不强等现象。

8. Adaboost
adaboost是bosting的方法之一。它是一种迭代算法,其核心思想是针对同一个训练集训练不同的分类器(弱分类器),然后把这些弱分类器集合起来,构成一个更强的最终分类器(强分类器)。
Boosting,也称为增强学习或提升法,是一种重要的集成学习技术,能够将预测精度仅比随机猜度略高的弱学习器增强为预测精度高的强学习器,这在直接构造强学习器非常困难的情况下,为学习算法的设计提供了一种有效的新思路和新方法。作为一种元算法框架,Boosting几乎可以应用于所有目前流行的机器学习算法以进一步加强原算法的预测精度,应用十分广泛,产生了极大的影响。而AdaBoost正是其中最成功的代表,被评为数据挖掘十大算法之一。在AdaBoost提出至今的十几年间,机器学习领域的诸多知名学者不断投入到算法相关理论的研究中去,扎实的理论为AdaBoost算法的成功应用打下了坚实的基础。
足球预测时容易产生过拟合或指向性不强等现象。


9. 神经网络
人工神经网络(Artificial Neural Networks,简写为ANNs)也简称为神经网络(NNs)或称作连接模型(Connection Model),它是一种模仿动物神经网络行为特征,进行分布式并行信息处理的算法数学模型。这种网络依靠系统的复杂程度,通过调整内部大量节点之间相互连接的关系,从而达到处理信息的目的。人工神经网络按其模型结构大体可以分为前馈型网络(也称为多层感知机网络)和反馈型网络(也称为Hopfield网络)两大类,前者在数学上可以看作是一类大规模的非线性映射系统,后者则是一类大规模的非线性动力学系统。按照学习方式,人工神经网络又可分为有监督学习、非监督和半监督学习三类;按工作方式则可分为确定性和随机性两类;按时间特性还可分为连续型或离散型两类,等等。
足球预测时容易产生过拟合或指向性不强等现象。

10. 马尔可夫
马尔可夫模型(Markov Model)是一种统计模型,广泛应用在语音识别,词性自动标注,音字转换,概率文法等各个自然语言处理等应用领域。经过长期发展,尤其是在语音识别中的成功应用,使它成为一种通用的统计工具。记得有篇论文是用Markov做的进球数预测。

这篇关于足球大数据预测实战之高胜率盈亏条件验证及优化算法的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/712538

相关文章

SpringBoot多环境配置数据读取方式

《SpringBoot多环境配置数据读取方式》SpringBoot通过环境隔离机制,支持properties/yaml/yml多格式配置,结合@Value、Environment和@Configura... 目录一、多环境配置的核心思路二、3种配置文件格式详解2.1 properties格式(传统格式)1.

SQL Server跟踪自动统计信息更新实战指南

《SQLServer跟踪自动统计信息更新实战指南》本文详解SQLServer自动统计信息更新的跟踪方法,推荐使用扩展事件实时捕获更新操作及详细信息,同时结合系统视图快速检查统计信息状态,重点强调修... 目录SQL Server 如何跟踪自动统计信息更新:深入解析与实战指南 核心跟踪方法1️⃣ 利用系统目录

解决pandas无法读取csv文件数据的问题

《解决pandas无法读取csv文件数据的问题》本文讲述作者用Pandas读取CSV文件时因参数设置不当导致数据错位,通过调整delimiter和on_bad_lines参数最终解决问题,并强调正确参... 目录一、前言二、问题复现1. 问题2. 通过 on_bad_lines=‘warn’ 跳过异常数据3

java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)

《java中pdf模版填充表单踩坑实战记录(itextPdf、openPdf、pdfbox)》:本文主要介绍java中pdf模版填充表单踩坑的相关资料,OpenPDF、iText、PDFBox是三... 目录准备Pdf模版方法1:itextpdf7填充表单(1)加入依赖(2)代码(3)遇到的问题方法2:pd

PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例

《PyTorch中的词嵌入层(nn.Embedding)详解与实战应用示例》词嵌入解决NLP维度灾难,捕捉语义关系,PyTorch的nn.Embedding模块提供灵活实现,支持参数配置、预训练及变长... 目录一、词嵌入(Word Embedding)简介为什么需要词嵌入?二、PyTorch中的nn.Em

C#监听txt文档获取新数据方式

《C#监听txt文档获取新数据方式》文章介绍通过监听txt文件获取最新数据,并实现开机自启动、禁用窗口关闭按钮、阻止Ctrl+C中断及防止程序退出等功能,代码整合于主函数中,供参考学习... 目录前言一、监听txt文档增加数据二、其他功能1. 设置开机自启动2. 禁止控制台窗口关闭按钮3. 阻止Ctrl +

java如何实现高并发场景下三级缓存的数据一致性

《java如何实现高并发场景下三级缓存的数据一致性》这篇文章主要为大家详细介绍了java如何实现高并发场景下三级缓存的数据一致性,文中的示例代码讲解详细,感兴趣的小伙伴可以跟随小编一起学习一下... 下面代码是一个使用Java和Redisson实现的三级缓存服务,主要功能包括:1.缓存结构:本地缓存:使

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

在IntelliJ IDEA中高效运行与调试Spring Boot项目的实战步骤

《在IntelliJIDEA中高效运行与调试SpringBoot项目的实战步骤》本章详解SpringBoot项目导入IntelliJIDEA的流程,教授运行与调试技巧,包括断点设置与变量查看,奠定... 目录引言:为良驹配上好鞍一、为何选择IntelliJ IDEA?二、实战:导入并运行你的第一个项目步骤1

在MySQL中实现冷热数据分离的方法及使用场景底层原理解析

《在MySQL中实现冷热数据分离的方法及使用场景底层原理解析》MySQL冷热数据分离通过分表/分区策略、数据归档和索引优化,将频繁访问的热数据与冷数据分开存储,提升查询效率并降低存储成本,适用于高并发... 目录实现冷热数据分离1. 分表策略2. 使用分区表3. 数据归档与迁移在mysql中实现冷热数据分