编译原理:正则表达式/正规式转NFA(原理+完整代码+可视化实现)

本文主要是介绍编译原理:正则表达式/正规式转NFA(原理+完整代码+可视化实现),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

从正则到自动机:正则表达式/正规式转换为NFA

【本文内容摘要】
(1)从中缀表达式转换为后缀表达式
(2)从后缀表达式转换为NFA
(3)打印NFA大致内容
(4)生成dot文件。
(5)完整代码
如果本文对各位看官有用的话,请记得给一个免费的赞哦(收藏也不错)!

文章目录

  • 从正则到自动机:正则表达式/正规式转换为NFA
    • 一、从中缀表达式转换为后缀表达式
    • 二、从后缀表达式转换为NFA
      • (A)本文用到的结构体
      • (B)一些准备工作(后续需要用到的函数)
      • (C)Thompson构造法(一些运算关系)
      • (D)将正则表达式转换为NFA
    • 三、生成dot文件
    • 四、案例测试
    • 五、C++代码完整实现


一、从中缀表达式转换为后缀表达式

下面链接详细讲述了如何从中缀表达式转换为后缀表达式,与本文的区别为符号优先关系表中部分元素不同,看完链接中的内容,我想下面的代码也可以理解了~

中缀表达式构建后缀表达式

//类里的各类元素定义
infixToPostfix::infixToPostfix(const string& infix_expression) : infix(infix_expression), postfix("") {isp = { {'+', 3}, {'|', 5}, {'*', 7},  {'(', 1}, {')', 8}, {'#', 0} };icp = { {'+', 2}, {'|', 4}, {'*', 6}, {'(', 8}, {')', 1}, {'#', 0} };
}int infixToPostfix::is_letter(char check) {if (check >= 'a' && check <= 'z' || check >= 'A' && check <= 'Z')return true;return false;
}int infixToPostfix::ispFunc(char c) {int priority = isp.count(c) ? isp[c] : -1;if (priority == -1) {cerr << "error: 出现未知符号!" << endl;exit(1);  // 异常退出}return priority;
}int infixToPostfix::icpFunc(char c) {int priority = icp.count(c) ? icp[c] : -1;if (priority == -1) {cerr << "error: 出现未知符号!" << endl;exit(1);  // 异常退出}return priority;
}void infixToPostfix::inToPost() {string infixWithHash = infix + "#";stack<char> stack;int loc = 0;while (!stack.empty() || loc < infixWithHash.size()) {if (is_letter(infixWithHash[loc])) {postfix += infixWithHash[loc];loc++;}else {char c1 = (stack.empty()) ? '#' : stack.top();char c2 = infixWithHash[loc];if (ispFunc(c1) < icpFunc(c2)) { // 栈顶操作符优先级低于当前字符,将当前字符入栈stack.push(c2);loc++;}else if (ispFunc(c1) > icpFunc(c2)) {  // 栈顶操作符优先级高于当前字符,将栈顶操作符出栈并添加到后缀表达式postfix += c1;stack.pop();}else {if (c1 == '#' && c2 == '#') { // 遇到两个 #,表达式结束break;}stack.pop(); //其中右括号遇到左括号时会抵消,左括号出栈,右括号不入栈loc++;}}}
}string infixToPostfix::getResult() {postfix = ""; // 清空结果inToPost();return postfix;
}

补充:关于在中缀表达式中添加"+"
add_join_symbol函数的作用是在正则表达式中添加连接符号+,以便于后续的中缀转后缀操作。这是因为正则表达式中的连接运算是隐含的,没有明确的符号表示,例如ab表示ab的连接,但是在中缀转后缀的过程中,需要有一个明确的符号来表示连接运算的优先级,否则会导致歧义或错误。例如,如果没有添加连接符号,那么a|b*的后缀表达式可能是ab*|或者a|b*,前者表示a或者b的闭包,后者表示a或者b的连接,这两者的含义是不同的。因此,为了避免这种情况,需要在正则表达式中添加连接符号+,表示连接运算的优先级高于或运算和闭包运算,举个栗子~,a(a|b)* ,加’+'后的表达式:a+(a|b)*,表示a和(a|b)*是拼接起来的。

//添加连接符号
string add_join_symbol(string add_string)
{int length = add_string.size();int return_string_length = 0;char* return_string = new char[2 * length + 2];//最多是两倍char first, second;for (int i = 0; i < length - 1; i++){first = add_string.at(i);second = add_string.at(i + 1);return_string[return_string_length++] = first;//要加的可能性如ab 、 *b 、 a( 、 )b 等情况//若第二个是字母、第一个不是'('、'|'都要添加if (first != '(' && first != '|' && is_letter(second)){return_string[return_string_length++] = '+';}//若第二个是'(',第一个不是'|'、'(',也要加else if (second == '(' && first != '|' && first != '('){return_string[return_string_length++] = '+';}}//将最后一个字符写入secondreturn_string[return_string_length++] = second;return_string[return_string_length] = '\0';string STRING(return_string);cout << "加'+'后的表达式:" << STRING << endl;return STRING;
}

二、从后缀表达式转换为NFA

(A)本文用到的结构体

  1. node
    node 表示NFA中的节点,每个节点有一个名称 nodeName,用于标识唯一的状态。

  2. edge
    edge 表示NFA中的边,包括起始节点 startName、目标节点 endName 和转换符号 tranSymbol
    startName 表示边的起始状态。
    endName 表示边的目标状态。
    tranSymbol 表示边上的转换符号,即从起始状态到目标状态的转换条件。

  3. elem
    elem 表示NFA的组成单元,它是一个大的NFA单元,可以由多个小单元通过规则拼接而成。
    edgeCount 表示该NFA拥有的边的数量。
    edgeSet 是一个包含边的数组,最多存储100条边。
    startName 表示NFA的开始状态。
    endName 表示NFA的结束状态。

(B)一些准备工作(后续需要用到的函数)

(a)创建新节点函数

//创建新节点
node new_node()
{node newNode;newNode.nodeName = nodeNum + 65;//将名字用大写字母表示nodeNum++;return newNode;
}

这里通过nodeNum + 65的方式为新节点分配一个唯一的名称,其中nodeNum是一个全局变量,表示节点的数量。比如第一个节点(nodeNum = 0时),这里将数字转换为大写字母(ASCII码为0+65 = 65),初始值为 ‘A’。

(b)组成单元拷贝函数 elem_copy
用于将一个 NFA 组成单元(elem 结构体)的内容复制到另一个组成单元中。

//组成单元拷贝函数
void elem_copy(elem& dest, elem source)
{for (int i = 0; i < source.edgeCount; i++) {dest.edgeSet[dest.edgeCount+i] = source.edgeSet[i];}dest.edgeCount += source.edgeCount;
}

(C)Thompson构造法(一些运算关系)

Thompson构造法(from 百度百科)

  1. 递归终点
    对于正则表达式为ε或者只由一个符号构成的情况,则无需继续递归,对应的NFA可以直接由下列规则给出:
    空表达式ε直接转化为:
    在这里插入图片描述

    字母表中的单个符号a直接转化为:
    在这里插入图片描述

2.子表达式运算的构造规则

  1. 并运算 (s|t):

    • 通过 ε 转移,状态 q 可以直接到达 N(s)N(t) 的初态。
    • N(s)N(t) 原来的终态可以通过 ε 转移直接到达整个 NFA 的新终态。
      在这里插入图片描述
  2. 连接运算 (st):

    • N(s) 的初态成为新的 NFA 的初态。
    • 原来 N(s) 的终态成为 N(t) 的初态。
    • 原来 N(t) 的终态成为新的 NFA 的终态。
      在这里插入图片描述
  3. Kleene闭包 (s):

    • 将新表达式的初态和终态以及夹在中间的子表达式的 NFA N(s) 连接起来的 ε 转移,使得可以选择经过或者不经过子表达式。
    • N(s) 的终态到初态的 ε 转移,使得 s 可以重复任意多次。
      在这里插入图片描述
  4. 加括号的表达式 (s):

    • 直接转化为 N(s) 自身即可。

下面根据Thompson构造法的规则来实现各种算法:

(a)处理单个字符(规则1)
在这里插入图片描述
上图为a

//处理 a
elem act_Elem(char c) 
{//新节点node startNode = new_node();node endNode = new_node();//新边edge newEdge;newEdge.startName = startNode;newEdge.endName = endNode;newEdge.tranSymbol = c;//新NFA组成元素(小的NFA元素/单元)elem newElem;newElem.edgeCount = 0;	//初始状态newElem.edgeSet[newElem.edgeCount++] = newEdge;newElem.startName = newElem.edgeSet[0].startName;newElem.endName = newElem.edgeSet[0].endName;return newElem;
}

(b)处理a|b(规则2.1)
在这里插入图片描述
上图为a|b
step1:创建一个新的elem结构体,用于存储或运算的NFA的边集合、边数量、开始节点和结束节点。然后,创建两个新的节点,分别作为开始节点和结束节点,并调用了一个自定义的函数new_node(),它会给每个节点分配一个唯一的名称(用大写字母表示)。
step2:创建了四条空串转换的边,分别连接开始节点和两个子表达式的开始节点,以及两个子表达式的结束节点和结束节点。这样就可以从开始节点通过空串转换选择进入任意一个子表达式,然后从子表达式的结束节点通过空串转换到达结束节点。
step3:将两个子表达式的边集合合并到新的边集合中,并更新边的数量。这样就可以保留两个子表达式的内部转换关系。

//处理a|b
elem act_Unit(elem fir, elem sec)
{elem newElem;newElem.edgeCount = 0;edge edge1, edge2, edge3, edge4;//获得新的状态节点node startNode = new_node();node endNode = new_node();//构建e1(连接起点和AB的起始点A)edge1.startName = startNode;edge1.endName = fir.startName;edge1.tranSymbol = '#';//构建e2(连接起点和CD的起始点C)edge2.startName = startNode;edge2.endName  = sec.startName;edge2.tranSymbol = '#';//构建e3(连接AB的终点和终点)edge3.startName = fir.endName;edge3.endName = endNode;edge3.tranSymbol = '#';//构建e4(连接CD的终点和终点)edge4.startName = sec.endName;edge4.endName = endNode;edge4.tranSymbol = '#';//将fir和sec合并elem_copy(newElem, fir);elem_copy(newElem, sec);//新构建的4条边newElem.edgeSet[newElem.edgeCount++] = edge1;newElem.edgeSet[newElem.edgeCount++] = edge2;newElem.edgeSet[newElem.edgeCount++] = edge3;newElem.edgeSet[newElem.edgeCount++] = edge4;newElem.startName = startNode;newElem.endName = endNode;return newElem;
}

(c)处理N(s)N(t)(规则2.2)

(a|b)(c|d)
上图为N(s)N(t)即(a|b)(c|d)
step1:函数接收两个elem结构体作为参数,分别表示两个子表达式的NFA,我们可以用N(s)N(t)来表示它们。
step2:函数的目标是将N(s)N(t)连接起来,形成一个新的NFA,我们可以用N(st)来表示它。N(st)的开始状态就是N(s)的开始状态,N(st)的结束状态就是N(t)的结束状态。
step3:函数的关键步骤是将N(s)的结束状态和N(t)的开始状态合并为一个状态(图中这个合并后的状态就是F),这样就可以从N(s)的结束状态直接转移到N(t)的开始状态,实现连接运算。为了做到这一点,函数遍历了N(t)的所有边,如果边的起始节点或结束节点是N(t)的开始状态,就将它们替换为N(s)的结束状态。
step4:函数将N(t)的边集合复制到N(s)的边集合中,并更新边的数量。这样,就可以保留N(s)N(t)的内部转换关系,同时添加了N(s)N(t)之间的转换关系。
step5:函数将N(s)的开始状态和N(t)的结束状态赋值给一个新的elem结构体,并将其返回作为函数的输出。

//处理 N(s)N(t)
elem act_join(elem fir, elem sec)
{//将fir的结束状态和sec的开始状态合并,将sec的边复制给fir,将fir返回//将sec中所有以StartState开头的边全部修改for (int i = 0; i < sec.edgeCount; i++) {if (sec.edgeSet[i].startName.nodeName.compare(sec.startName.nodeName) == 0){sec.edgeSet[i].startName = fir.endName; //该边e1的开始状态就是N(t)的起始状态}else if (sec.edgeSet[i].endName.nodeName.compare(sec.startName.nodeName) == 0) {sec.edgeSet[i].endName = fir.endName; //该边e2的结束状态就是N(t)的起始状态}}sec.startName = fir.endName;elem_copy(fir, sec);//将fir的结束状态更新为sec的结束状态fir.endName = sec.endName;return fir;
}

(d)处理a*(规则2.3)
在这里插入图片描述
上图为a*
step1:首先,创建一个新的elem结构体,用于存储闭包运算的NFA的边集合、边数量、开始节点和结束节点。
step2:然后,创建两个新的节点,分别作为开始节点和结束节点,并调用了一个自定义的函数new_node(),它会给每个节点分配一个唯一的名称(用大写字母表示)。
step3:接着,创建了四条空串转换的边,分别连接开始节点和结束节点,开始节点和子表达式的开始节点,子表达式的结束节点和子表达式的开始节点,子表达式的结束节点和结束节点。这样就可以从开始节点通过空串转换到结束节点,或者从开始节点通过空串转换到子表达式,然后从子表达式的结束节点通过空串转换回子表达式的开始节点,重复任意次,最后从子表达式的结束节点通过空串转换到结束节点,实现闭包运算。
step4:然后,将子表达式的边集合复制到新的边集合中,并更新边的数量。这样就可以保留子表达式的内部转换关系。
step5:将开始节点和结束节点的名称赋值给新的elem结构体,并将其返回作为函数的输出。

//处理a*
elem act_star(elem Elem)
{elem newElem;newElem.edgeCount = 0;edge edge1, edge2, edge3, edge4;//获得新状态节点node startNode = new_node();node endNode = new_node();//e1edge1.startName = startNode;edge1.endName = endNode;edge1.tranSymbol = '#';	//闭包取空串//e2edge2.startName = Elem.endName;edge2.endName = Elem.startName;edge2.tranSymbol = '#';//e3edge3.startName = startNode;edge3.endName = Elem.startName;edge3.tranSymbol = '#';//e4edge4.startName = Elem.endName;edge4.endName = endNode;edge4.tranSymbol = '#';//构建单元elem_copy(newElem, Elem);//将新构建的四条边加入EdgeSetnewElem.edgeSet[newElem.edgeCount++] = edge1;newElem.edgeSet[newElem.edgeCount++] = edge2;newElem.edgeSet[newElem.edgeCount++] = edge3;newElem.edgeSet[newElem.edgeCount++] = edge4;//构建NewElem的启示状态和结束状态newElem.startName = startNode;newElem.endName = endNode;return newElem;
}

(e)规则2.4:N(s)转换为自身即可

(D)将正则表达式转换为NFA

这里解释代码即可:

/**表达式转NFA处理函数,返回最终的NFA集合
*/
elem express_to_NFA(string expression)
{int length = expression.size();char element;elem Elem, fir, sec;stack<elem> STACK;for (int i = 0; i < length; i++){element = expression.at(i);switch (element){case '|':sec = STACK.top();STACK.pop();fir = STACK.top();STACK.pop();Elem = act_Unit(fir, sec);STACK.push(Elem);break;case '*':fir = STACK.top();STACK.pop();Elem = act_star(fir);STACK.push(Elem);break;case '+':sec = STACK.top();STACK.pop();fir = STACK.top();STACK.pop();Elem = act_join(fir, sec);STACK.push(Elem);break;default:Elem = act_Elem(element);STACK.push(Elem);}}cout << "已将正则表达式转换为NFA!" << endl;Elem = STACK.top();STACK.pop();return Elem;
}
  1. 变量定义以及含义:

    • expression: 输入的正则表达式字符串。
    • element: 正则表达式中的单个符号。
    • Elem: elem结构体,表示一个NFA的组成单元。
    • firsec: 两个子表达式的NFA。
    • STACK: 存储和操作NFA的组成单元的栈。
  2. 遍历正则表达式:

    • 对于每个符号执行不同的操作。
      • 如果符号是 |,弹出两个NFA,调用 act_Unit(fir, sec) 构造或运算的NFA,将结果压入栈。
      • 如果符号是 *,弹出一个NFA,调用 act_star(fir) 构造闭包运算的NFA,将结果压入栈。
      • 如果符号是 +,弹出两个NFA,调用 act_join(fir, sec) 构造连接运算的NFA,将结果压入栈。
      • 如果符号是其他字符,调用 act_Elem(element) 构造单个字符的NFA,将结果压入栈。
  3. 返回结果:

    • 从栈中弹出最后一个NFA的组成单元,赋值给 Elem,并将其作为函数的输出返回。

三、生成dot文件

NFA经过上面步骤已经基本成型了,下面讲一讲dot文件。

根据百度百科:graphviz (英文:Graph Visualization Software的缩写)是一个由AT&T实验室启动的开源工具包,用于绘制DOT语言脚本描述的图形。

简单理解,生成这个dot文件丢给这个工具就可以实现可视化,我依据我的NFA实现了一个生成dot文件的函数。

//生成NFAdot文件
void generateDotFile_NFA(const elem& nfa) {std::ofstream dotFile("nfa_graph.dot");if (dotFile.is_open()) {dotFile << "digraph NFA {\n";dotFile << "  rankdir=LR;  // 横向布局\n\n";dotFile << " node [shape = circle];   // 状态节点\n\n";dotFile << nfa.endName.nodeName << " [shape=doublecircle];\n";// 添加 NFA 状态dotFile << "  " << nfa.startName.nodeName << " [label=\"Start State: " << nfa.startName.nodeName << "\"];\n";dotFile << "  " << nfa.endName.nodeName << " [label=\"End State: " << nfa.endName.nodeName << "\"];\n";// 添加 NFA 转移for (int i = 0; i < nfa.edgeCount; i++) {const edge& currentEdge = nfa.edgeSet[i];dotFile << "  " << currentEdge.startName.nodeName << " -> " << currentEdge.endName.nodeName << " [label=\"" << currentEdge.tranSymbol << "\"];\n";}dotFile << "}\n";dotFile.close();std::cout << "NFA DOT file generated successfully.\n";}else {std::cerr << "Unable to open NFA DOT file.\n";}
}

代码思路:
step1:创建一个输出流对象dotFile,并尝试打开一个名为"nfa_graph.dot"的文件,用于存储dot文件的内容。
step2:如果文件打开成功,向文件中写入了一些dot语法的规则,例如:

  • digraph NFA表示这是一个有向图,图的名字是NFA。
  • rankdir=LR表示图的布局方向是从左到右。
  • node [shape = circle]表示图中的节点的形状是圆形。
  • nfa.endName.nodeName [shape=doublecircle]表示NFA的结束状态的节点的形状是双圆形。

Step3:向文件中写入了NFA的状态和转移的信息,例如:

  • nfa.startName.nodeName [label="Start State: nfa.startName.nodeName"]表示NFA的开始状态的节点的标签是"Start State: nfa.startName.nodeName",其中nfa.startName.nodeName是节点的名称。
  • nfa.endName.nodeName [label="End State: nfa.endName.nodeName"]表示NFA的结束状态的节点的标签是"End State: nfa.endName.nodeName",其中nfa.endName.nodeName是节点的名称。
  • currentEdge.startName.nodeName -> currentEdge.endName.nodeName [label="currentEdge.tranSymbol"]表示NFA的一条转移的边,从currentEdge.startName.nodeName节点指向currentEdge.endName.nodeName节点,边上的标签是currentEdge.tranSymbol,表示转移的符号。

step4:向文件中写入了一个右花括号,表示图的结束,然后关闭文件,并输出一条提示信息,表示NFA的dot文件生成成功。如果文件打开失败,输出一条错误信息,表示无法打开NFA的dot文件。

四、案例测试

  1. (a|b|c)*
    在这里插入图片描述

在这里插入图片描述
上面为在命令提示符中到指定目录下(你dot文件所在的目录下)输入指令将dot文件生成图片,然后打开visual studio目录,找到nfa.png:
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

  1. a(b|c)*de
    在这里插入图片描述
    在这里插入图片描述

五、C++代码完整实现

//head.h
#ifndef HEAD_H
#define HEAD_H#include <iostream>
#include <stdio.h>
#include <cctype>
#include <stack>
#include <string>
#include <map>
#include <set>
#include <vector>
#include<iterator>
#include <fstream>using namespace std;//NFA的节点
struct node
{string nodeName;
};//NFA的边
struct edge
{node startName;	//起始点node endName;	//目标点char tranSymbol;	//转换符号
};//NFA的组成单元,一个大的NFA单元可以是由很多小单元通过规则拼接起来
struct elem
{int edgeCount;	//边数edge edgeSet[100];	//该NFA拥有的边node startName;	//开始状态node endName; //结束状态
};//创建新节点
node new_node();//处理 a
elem act_Elem(char);//处理a|b
elem act_Unit(elem,elem);//组成单元拷贝函数
void elem_copy(elem&, elem);//处理ab
elem act_join(elem, elem);//处理 a*
elem act_star(elem);void input(string&);string add_join_symbol(string);	//两个单元拼接在一起相当于一个+class infixToPostfix {
public:infixToPostfix(const string& infix_expression);int is_letter(char check);int ispFunc(char c);int icpFunc(char c);void inToPost();string getResult();private:string infix;string postfix;map<char, int> isp;map<char, int> icp;
};elem express_to_NFA(string);void Display(elem);int is_letter(char check);void generateDotFile_NFA(const elem& nfa);
#endif
//Func.cpp
#include "head.h"int nodeNum = 0;//创建新节点
node new_node()
{node newNode;newNode.nodeName = nodeNum + 65;//将名字用大写字母表示nodeNum++;return newNode;
}//接收输入正规表达式
void input(string& RE)
{cout << "请输入正则表达式:  (操作符:() * |;字符集:a~z A~Z)" << endl;cin >> RE;
}//组成单元拷贝函数
void elem_copy(elem& dest, elem source)
{for (int i = 0; i < source.edgeCount; i++) {dest.edgeSet[dest.edgeCount+i] = source.edgeSet[i];}dest.edgeCount += source.edgeCount;
}//处理 a
elem act_Elem(char c) 
{//新节点node startNode = new_node();node endNode = new_node();//新边edge newEdge;newEdge.startName = startNode;newEdge.endName = endNode;newEdge.tranSymbol = c;//新NFA组成元素(小的NFA元素/单元)elem newElem;newElem.edgeCount = 0;	//初始状态newElem.edgeSet[newElem.edgeCount++] = newEdge;newElem.startName = newElem.edgeSet[0].startName;newElem.endName = newElem.edgeSet[0].endName;return newElem;
}//处理a|b
elem act_Unit(elem fir, elem sec)
{elem newElem;newElem.edgeCount = 0;edge edge1, edge2, edge3, edge4;//获得新的状态节点node startNode = new_node();node endNode = new_node();//构建e1(连接起点和AB的起始点A)edge1.startName = startNode;edge1.endName = fir.startName;edge1.tranSymbol = '#';//构建e2(连接起点和CD的起始点C)edge2.startName = startNode;edge2.endName  = sec.startName;edge2.tranSymbol = '#';//构建e3(连接AB的终点和终点)edge3.startName = fir.endName;edge3.endName = endNode;edge3.tranSymbol = '#';//构建e4(连接CD的终点和终点)edge4.startName = sec.endName;edge4.endName = endNode;edge4.tranSymbol = '#';//将fir和sec合并elem_copy(newElem, fir);elem_copy(newElem, sec);//新构建的4条边newElem.edgeSet[newElem.edgeCount++] = edge1;newElem.edgeSet[newElem.edgeCount++] = edge2;newElem.edgeSet[newElem.edgeCount++] = edge3;newElem.edgeSet[newElem.edgeCount++] = edge4;newElem.startName = startNode;newElem.endName = endNode;return newElem;
}//处理 N(s)N(t)
elem act_join(elem fir, elem sec)
{//将fir的结束状态和sec的开始状态合并,将sec的边复制给fir,将fir返回//将sec中所有以StartState开头的边全部修改for (int i = 0; i < sec.edgeCount; i++) {if (sec.edgeSet[i].startName.nodeName.compare(sec.startName.nodeName) == 0){sec.edgeSet[i].startName = fir.endName; //该边e1的开始状态就是N(t)的起始状态}else if (sec.edgeSet[i].endName.nodeName.compare(sec.startName.nodeName) == 0) {sec.edgeSet[i].endName = fir.endName; //该边e2的结束状态就是N(t)的起始状态}}sec.startName = fir.endName;elem_copy(fir, sec);//将fir的结束状态更新为sec的结束状态fir.endName = sec.endName;return fir;
}elem act_star(elem Elem)
{elem newElem;newElem.edgeCount = 0;edge edge1, edge2, edge3, edge4;//获得新状态节点node startNode = new_node();node endNode = new_node();//e1edge1.startName = startNode;edge1.endName = endNode;edge1.tranSymbol = '#';	//闭包取空串//e2edge2.startName = Elem.endName;edge2.endName = Elem.startName;edge2.tranSymbol = '#';//e3edge3.startName = startNode;edge3.endName = Elem.startName;edge3.tranSymbol = '#';//e4edge4.startName = Elem.endName;edge4.endName = endNode;edge4.tranSymbol = '#';//构建单元elem_copy(newElem, Elem);//将新构建的四条边加入EdgeSetnewElem.edgeSet[newElem.edgeCount++] = edge1;newElem.edgeSet[newElem.edgeCount++] = edge2;newElem.edgeSet[newElem.edgeCount++] = edge3;newElem.edgeSet[newElem.edgeCount++] = edge4;//构建NewElem的启示状态和结束状态newElem.startName = startNode;newElem.endName = endNode;return newElem;
}int is_letter(char check) {if (check >= 'a' && check <= 'z' || check >= 'A' && check <= 'Z')return true;return false;
}
//添加连接符号
string add_join_symbol(string add_string)
{int length = add_string.size();int return_string_length = 0;char* return_string = new char[2 * length + 2];//最多是两倍char first, second;for (int i = 0; i < length - 1; i++){first = add_string.at(i);second = add_string.at(i + 1);return_string[return_string_length++] = first;//要加的可能性如ab 、 *b 、 a( 、 )b 等情况//若第二个是字母、第一个不是'('、'|'都要添加if (first != '(' && first != '|' && is_letter(second)){return_string[return_string_length++] = '+';}//若第二个是'(',第一个不是'|'、'(',也要加else if (second == '(' && first != '|' && first != '('){return_string[return_string_length++] = '+';}}//将最后一个字符写入secondreturn_string[return_string_length++] = second;return_string[return_string_length] = '\0';string STRING(return_string);cout << "加'+'后的表达式:" << STRING << endl;return STRING;
}//类里的各类元素定义
infixToPostfix::infixToPostfix(const string& infix_expression) : infix(infix_expression), postfix("") {isp = { {'+', 3}, {'|', 5}, {'*', 7},  {'(', 1}, {')', 8}, {'#', 0} };icp = { {'+', 2}, {'|', 4}, {'*', 6}, {'(', 8}, {')', 1}, {'#', 0} };
}int infixToPostfix::is_letter(char check) {if (check >= 'a' && check <= 'z' || check >= 'A' && check <= 'Z')return true;return false;
}int infixToPostfix::ispFunc(char c) {int priority = isp.count(c) ? isp[c] : -1;if (priority == -1) {cerr << "error: 出现未知符号!" << endl;exit(1);  // 异常退出}return priority;
}int infixToPostfix::icpFunc(char c) {int priority = icp.count(c) ? icp[c] : -1;if (priority == -1) {cerr << "error: 出现未知符号!" << endl;exit(1);  // 异常退出}return priority;
}void infixToPostfix::inToPost() {string infixWithHash = infix + "#";stack<char> stack;int loc = 0;while (!stack.empty() || loc < infixWithHash.size()) {if (is_letter(infixWithHash[loc])) {postfix += infixWithHash[loc];loc++;}else {char c1 = (stack.empty()) ? '#' : stack.top();char c2 = infixWithHash[loc];if (ispFunc(c1) < icpFunc(c2)) { // 栈顶操作符优先级低于当前字符,将当前字符入栈stack.push(c2);loc++;}else if (ispFunc(c1) > icpFunc(c2)) {  // 栈顶操作符优先级高于当前字符,将栈顶操作符出栈并添加到后缀表达式postfix += c1;stack.pop();}else {if (c1 == '#' && c2 == '#') { // 遇到两个 #,表达式结束break;}stack.pop(); //其中右括号遇到左括号时会抵消,左括号出栈,右括号不入栈loc++;}}}
}string infixToPostfix::getResult() {postfix = ""; // 清空结果inToPost();return postfix;
}/**表达式转NFA处理函数,返回最终的NFA集合
*/
elem express_to_NFA(string expression)
{int length = expression.size();char element;elem Elem, fir, sec;stack<elem> STACK;for (int i = 0; i < length; i++){element = expression.at(i);switch (element){case '|':sec = STACK.top();STACK.pop();fir = STACK.top();STACK.pop();Elem = act_Unit(fir, sec);STACK.push(Elem);break;case '*':fir = STACK.top();STACK.pop();Elem = act_star(fir);STACK.push(Elem);break;case '+':sec = STACK.top();STACK.pop();fir = STACK.top();STACK.pop();Elem = act_join(fir, sec);STACK.push(Elem);break;default:Elem = act_Elem(element);STACK.push(Elem);}}cout << "已将正则表达式转换为NFA!" << endl;Elem = STACK.top();STACK.pop();return Elem;
}//打印NFA
void Display(elem Elem) {cout << "NFA States:" << endl;cout << "Start State: " << Elem.startName.nodeName << endl;cout << "End State: " << Elem.endName.nodeName << endl;cout << "NFA Transitions:" << endl;for (int i = 0; i < Elem.edgeCount; i++) {cout << "Edge " << i + 1 << ": ";cout << Elem.edgeSet[i].startName.nodeName << " --(" << Elem.edgeSet[i].tranSymbol << ")--> ";cout << Elem.edgeSet[i].endName.nodeName << endl;}cout << "End" << endl;
}//生成NFAdot文件
void generateDotFile_NFA(const elem& nfa) {std::ofstream dotFile("nfa_graph.dot");if (dotFile.is_open()) {dotFile << "digraph NFA {\n";dotFile << "  rankdir=LR;  // 横向布局\n\n";dotFile << " node [shape = circle];   // 状态节点\n\n";dotFile << nfa.endName.nodeName << " [shape=doublecircle];\n";// 添加 NFA 状态dotFile << "  " << nfa.startName.nodeName << " [label=\"Start State: " << nfa.startName.nodeName << "\"];\n";dotFile << "  " << nfa.endName.nodeName << " [label=\"End State: " << nfa.endName.nodeName << "\"];\n";// 添加 NFA 转移for (int i = 0; i < nfa.edgeCount; i++) {const edge& currentEdge = nfa.edgeSet[i];dotFile << "  " << currentEdge.startName.nodeName << " -> " << currentEdge.endName.nodeName << " [label=\"" << currentEdge.tranSymbol << "\"];\n";}dotFile << "}\n";dotFile.close();std::cout << "NFA DOT file generated successfully.\n";}else {std::cerr << "Unable to open NFA DOT file.\n";}
}
//main
#include "head.h" // 包含提供的头文件int main() {string Regular_Expression;elem NFA_Elem;input(Regular_Expression);if (Regular_Expression.length() > 1)    Regular_Expression = add_join_symbol(Regular_Expression);infixToPostfix Solution(Regular_Expression);//中缀转后缀cout << "后缀表达式为:";Regular_Expression = Solution.getResult();cout << Regular_Expression << endl;//表达式转NFANFA_Elem = express_to_NFA(Regular_Expression);//显示Display(NFA_Elem);//生成NFAdot文件generateDotFile_NFA(NFA_Elem);// 初始化 DFA 状态集合和转换关系vector<DFAState> dfaStates; //用于存储所有的DFA状态vector<DFATransition> dfaTransitions; //用于存储DFA状态之间的转移set<string> nfaInitialStateSet;   //存储NFA的初始状态nfaInitialStateSet.insert(NFA_Elem.startName.nodeName); DFAState dfaInitialState = eClosure(nfaInitialStateSet,NFA_Elem);//计算NFA初始状态的ε闭包dfaStates.push_back(dfaInitialState);// 开始构建 DFAfor (int i = 0; i < dfaStates.size(); i++)   {DFAState dfaState = dfaStates[i];for (int j = 0; j <NFA_Elem.edgeCount; j++) {char symbol = NFA_Elem.edgeSet[j].tranSymbol;DFAState nextState = move(dfaState, symbol,NFA_Elem);DFAState dfaNextState = eClosure(nextState.nfaStates, NFA_Elem);if (!nextState.nfaStates.empty()) {if (!isDFAStateInVector(dfaStates, dfaNextState)) {dfaStates.push_back(dfaNextState);}//对于边也要去重,因为等于a的边可能会遍历到两次if (!isTransitionInVector(dfaState, dfaNextState, symbol, dfaTransitions)) {dfaTransitions.push_back({ dfaState,dfaNextState, symbol });}}}}// 显示 DFAdisplayDFA(dfaStates, dfaTransitions);//生成DFAdot文件generateDotFile_DFA(dfaStates,dfaTransitions);return 0;
}

这篇关于编译原理:正则表达式/正规式转NFA(原理+完整代码+可视化实现)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/710152

相关文章

Qt使用QSqlDatabase连接MySQL实现增删改查功能

《Qt使用QSqlDatabase连接MySQL实现增删改查功能》这篇文章主要为大家详细介绍了Qt如何使用QSqlDatabase连接MySQL实现增删改查功能,文中的示例代码讲解详细,感兴趣的小伙伴... 目录一、创建数据表二、连接mysql数据库三、封装成一个完整的轻量级 ORM 风格类3.1 表结构

基于Python实现一个图片拆分工具

《基于Python实现一个图片拆分工具》这篇文章主要为大家详细介绍了如何基于Python实现一个图片拆分工具,可以根据需要的行数和列数进行拆分,感兴趣的小伙伴可以跟随小编一起学习一下... 简单介绍先自己选择输入的图片,默认是输出到项目文件夹中,可以自己选择其他的文件夹,选择需要拆分的行数和列数,可以通过

Python中将嵌套列表扁平化的多种实现方法

《Python中将嵌套列表扁平化的多种实现方法》在Python编程中,我们常常会遇到需要将嵌套列表(即列表中包含列表)转换为一个一维的扁平列表的需求,本文将给大家介绍了多种实现这一目标的方法,需要的朋... 目录python中将嵌套列表扁平化的方法技术背景实现步骤1. 使用嵌套列表推导式2. 使用itert

Python使用pip工具实现包自动更新的多种方法

《Python使用pip工具实现包自动更新的多种方法》本文深入探讨了使用Python的pip工具实现包自动更新的各种方法和技术,我们将从基础概念开始,逐步介绍手动更新方法、自动化脚本编写、结合CI/C... 目录1. 背景介绍1.1 目的和范围1.2 预期读者1.3 文档结构概述1.4 术语表1.4.1 核

在Linux中改变echo输出颜色的实现方法

《在Linux中改变echo输出颜色的实现方法》在Linux系统的命令行环境下,为了使输出信息更加清晰、突出,便于用户快速识别和区分不同类型的信息,常常需要改变echo命令的输出颜色,所以本文给大家介... 目python录在linux中改变echo输出颜色的方法技术背景实现步骤使用ANSI转义码使用tpu

Python使用python-can实现合并BLF文件

《Python使用python-can实现合并BLF文件》python-can库是Python生态中专注于CAN总线通信与数据处理的强大工具,本文将使用python-can为BLF文件合并提供高效灵活... 目录一、python-can 库:CAN 数据处理的利器二、BLF 文件合并核心代码解析1. 基础合

Python使用OpenCV实现获取视频时长的小工具

《Python使用OpenCV实现获取视频时长的小工具》在处理视频数据时,获取视频的时长是一项常见且基础的需求,本文将详细介绍如何使用Python和OpenCV获取视频时长,并对每一行代码进行深入解析... 目录一、代码实现二、代码解析1. 导入 OpenCV 库2. 定义获取视频时长的函数3. 打开视频文

golang版本升级如何实现

《golang版本升级如何实现》:本文主要介绍golang版本升级如何实现问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录golanwww.chinasem.cng版本升级linux上golang版本升级删除golang旧版本安装golang最新版本总结gola

SpringBoot中SM2公钥加密、私钥解密的实现示例详解

《SpringBoot中SM2公钥加密、私钥解密的实现示例详解》本文介绍了如何在SpringBoot项目中实现SM2公钥加密和私钥解密的功能,通过使用Hutool库和BouncyCastle依赖,简化... 目录一、前言1、加密信息(示例)2、加密结果(示例)二、实现代码1、yml文件配置2、创建SM2工具

Mysql实现范围分区表(新增、删除、重组、查看)

《Mysql实现范围分区表(新增、删除、重组、查看)》MySQL分区表的四种类型(范围、哈希、列表、键值),主要介绍了范围分区的创建、查询、添加、删除及重组织操作,具有一定的参考价值,感兴趣的可以了解... 目录一、mysql分区表分类二、范围分区(Range Partitioning1、新建分区表:2、分