Win10(x64)系统Python 3.6.5(Anaconda3)本地调用哈工大最新版LTP 3.4

本文主要是介绍Win10(x64)系统Python 3.6.5(Anaconda3)本地调用哈工大最新版LTP 3.4,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

Win10(x64)系统Python 3.6.5(Anaconda3)本地调用哈工大最新版LTP 3.4

本文基于网上失败与成功经验,经过多次调试,实现了Win10(x64)系统下Python 3.6.5(Anaconda3)本地调用哈工大LTP 3.4,故将主要关键步骤分述如下:

  • LTP的选择与下载
  • LTP本地安装
  • pyltp库安装
  • 程序调用与测试

LTP的选择与下载

哈工大语言技术平台(LTP) 提供包括中文分词、词性标注、命名实体识别、依存句法分析、语义角色标注等丰富、 高效、精准的自然语言处理技术。 —— [ 哈工大语言技术平台 ]

python语言下本地调用LTP,需要安装LTP、LTP模型文件以及第三方库pyltp。

目前语言技术平台3.4.0版 发布,
* 增加新的基于Bi-LSTM的SRL模型
* 增加了SRL的多线程命令行程序srl_cmdline
* 修改了SRL相关的编程接口已经改变,修复了之前内存泄露的相关问题。

笔者电脑为Win10(x64)系统,Python为Anaconda3所集成的python3.6.5,采用哈工大最新版LTP 3.4,根据版本匹配建议(链接),需下载ltp-3.4.0-win-x64-Release.zip以及模型文件ltp_data_v3.4.0.zip。需要预先说明的是,此时对应的python库
这里写图片描述

LTP采用C++编写,若采用python语言调用LTP,安装pyltp库,版本pyltp-0.2.1,直接采用pip命令安装难以成功,会出现缺少VC++ 14.0 组件的错误。其实笔者电脑已安装Visual studio 2017
这里写图片描述
最后经过多次尝试网上说的一些方法,采用安装pyltp对应的 wheel文件成功。网上能找到pyltp-0.2.1的wheel文件,但更低版本的就难以找到了。据说是一个大神在自己的电脑(win10)上编译的,64bit的windows应该都可以,csdn下载地址(链接)
pyltp-0.2.1-cp35-cp35m-win_amd64.whl
pyltp-0.2.1-cp36-cp36m-win_amd64.whl
注意: 这两个文件的区别是python版本号

LTP本地安装

(1)新建一个项目文件夹,比如:F:\myprojects\LTP;

(2)将模型文件ltp_data_v3.4.0.zip解压后的ltp_data文件夹放入项目文件夹;

(3)将ltp-3.4.0-win-x64-Release.zip解压后的dll、exe文件全部拷入项目文件夹。
LTP文件夹

这里写图片描述

模型文件夹
这里写图片描述

按照官网提示(链接),LTP 3.4.0 版本 SRL模型 pisrl.model 如在windows系统下不可用,可以到官网“此链接” 下载支持windows的语义角色标注模型。
这里写图片描述

由后期调试经验表明,此步骤非常重要,语义角色标注模型基本报错,通过替换win版本后调试成功。

pyltp库安装

由前述下载好pyltp-0.2.1-cp36-cp36m-win_amd64.whl 文件后,存放到本地文件夹,然后采用pip命令安装,如笔者存放在路径F:\fruanjian\pyth下,pip命令:
pip install F:\fruanjian\pyth\pyltp-0.2.1-cp36-cp36m-win_amd64.whl
这里写图片描述

程序调用与测试

参考网上示例(链接),做了细部修改,比如更改路径,以及3.4版本语义角色分析需采用pisrl.model

程序调用代码块

代码块语法遵循标准markdown代码,例如:

import os
LTP_DATA_DIR = 'F:\myprojects\LTP\ltp_data34'  # ltp模型目录的路径
cws_model_path = os.path.join(LTP_DATA_DIR, 'cws.model')  # 分词模型路径,模型名称为`cws.model`
pos_model_path = os.path.join(LTP_DATA_DIR, 'pos.model')  # 词性标注模型路径,模型名称为`pos.model`
ner_model_path = os.path.join(LTP_DATA_DIR, 'ner.model')  # 命名实体识别模型路径,模型名称为`pos.model`
par_model_path = os.path.join(LTP_DATA_DIR, 'parser.model')  # 依存句法分析模型路径,模型名称为`parser.model`
srl_model_path = os.path.join(LTP_DATA_DIR, 'pisrl.model')  # 语义角色标注模型目录路径,模型目录为`srl`。注意该模型路径是一个目录,而不是一个文件。from pyltp import SentenceSplitter
from pyltp import Segmentor
from pyltp import Postagger
from pyltp import NamedEntityRecognizer
from pyltp import Parser
from pyltp import SementicRoleLabeller#分句,也就是将一片文本分割为独立的句子
def sentence_splitter(sentence='人生苦短。我用python。你呢?'):sents = SentenceSplitter.split(sentence)  # 分句print ('\n'.join(sents))#分词
def segmentor(sentence='我是中国人'):segmentor = Segmentor()  # 初始化实例segmentor.load(cws_model_path)  # 加载模型words = segmentor.segment(sentence)  # 分词#默认可以这样输出print ('\t'.join(words))# 可以转换成List 输出words_list = list(words)segmentor.release()  # 释放模型return words_listdef posttagger(words):postagger = Postagger() # 初始化实例postagger.load(pos_model_path)  # 加载模型postags = postagger.postag(words)  # 词性标注for word,tag in zip(words,postags):print (word+'/'+tag)postagger.release()  # 释放模型return postags#命名实体识别
def ner(words, postags):recognizer = NamedEntityRecognizer() # 初始化实例recognizer.load(ner_model_path)  # 加载模型netags = recognizer.recognize(words, postags)  # 命名实体识别for word, ntag in zip(words, netags):print (word + '/' + ntag)recognizer.release()  # 释放模型return netags#依存语义分析
def parse(words, postags):parser = Parser() # 初始化实例parser.load(par_model_path)  # 加载模型arcs = parser.parse(words, postags)  # 句法分析print ("\t".join("%d:%s" % (arc.head, arc.relation) for arc in arcs))parser.release()  # 释放模型return arcs#角色标注
def role_label(words, postags, arcs):labeller = SementicRoleLabeller() # 初始化实例labeller.load(srl_model_path)  # 加载模型roles = labeller.label(words, postags,  arcs)  # 语义角色标注for role in roles:print (role.index, "".join(["%s:(%d,%d)" % (arg.name, arg.range.start, arg.range.end) for arg in role.arguments]))labeller.release()  # 释放模型#测试分句子
print('******************测试将会顺序执行:**********************')
sentence_splitter()
print('###############以上为分句子测试###############')
#测试分词
words=segmentor()
print('###############以上为分词标注测试###############')
#测试标注
tags = posttagger(words)
print('###############以上为词性标注测试###############')
#命名实体识别
netags = ner(words,tags)
print('###############以上为命名实体识别测试###############')
#依存句法识别
arcs = parse(words,tags)
print('###############以上为依存句法测试###############')
#角色标注
roles = role_label(words,tags,arcs)
print('###############以上为角色标注测试###############')

再次提醒,可能替换ltp_data文件夹下语义角色分析的pisrl.model,否则可能出错。
另一个出错的地方就是 SementicRoleLabeller.label函数,笔者修改后采用3个参数,调试成功。
这里写图片描述
测试结果为
这里写图片描述
而 SementicRoleLabeller.label采用网上的4个参数,调用函数如下
这里写图片描述
一直调试不成功,出现如下错误:
Traceback (most recent call last):
File “F:\xuexi\spypython\nlpprogram\test_ltp.py”, line 95, in
roles = role_label(words,tags,netags,arcs)
File “F:\xuexi\spypython\nlpprogram\test_ltp.py”, line 72, in role_label
roles = labeller.label(words, postags, netags, arcs) # 语义角色标注
Boost.Python.ArgumentError: Python argument types in
SementicRoleLabeller.label(SementicRoleLabeller, list, VectorOfString, VectorOfString, VectorOfParseResult)
did not match C++ signature:

以上即是本人初次学习LTP时安装LTP的尝试,其中也存在很多不懂的地方,欢迎各位交流,敬请不吝珠玉!qq:2735500267

这篇关于Win10(x64)系统Python 3.6.5(Anaconda3)本地调用哈工大最新版LTP 3.4的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/702798

相关文章

一文教你Python如何快速精准抓取网页数据

《一文教你Python如何快速精准抓取网页数据》这篇文章主要为大家详细介绍了如何利用Python实现快速精准抓取网页数据,文中的示例代码简洁易懂,具有一定的借鉴价值,有需要的小伙伴可以了解下... 目录1. 准备工作2. 基础爬虫实现3. 高级功能扩展3.1 抓取文章详情3.2 保存数据到文件4. 完整示例

使用Python实现IP地址和端口状态检测与监控

《使用Python实现IP地址和端口状态检测与监控》在网络运维和服务器管理中,IP地址和端口的可用性监控是保障业务连续性的基础需求,本文将带你用Python从零打造一个高可用IP监控系统,感兴趣的小伙... 目录概述:为什么需要IP监控系统使用步骤说明1. 环境准备2. 系统部署3. 核心功能配置系统效果展

基于Python打造一个智能单词管理神器

《基于Python打造一个智能单词管理神器》这篇文章主要为大家详细介绍了如何使用Python打造一个智能单词管理神器,从查询到导出的一站式解决,感兴趣的小伙伴可以跟随小编一起学习一下... 目录1. 项目概述:为什么需要这个工具2. 环境搭建与快速入门2.1 环境要求2.2 首次运行配置3. 核心功能使用指

Python实现微信自动锁定工具

《Python实现微信自动锁定工具》在数字化办公时代,微信已成为职场沟通的重要工具,但临时离开时忘记锁屏可能导致敏感信息泄露,下面我们就来看看如何使用Python打造一个微信自动锁定工具吧... 目录引言:当微信隐私遇到自动化守护效果展示核心功能全景图技术亮点深度解析1. 无操作检测引擎2. 微信路径智能获

C#如何调用C++库

《C#如何调用C++库》:本文主要介绍C#如何调用C++库方式,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录方法一:使用P/Invoke1. 导出C++函数2. 定义P/Invoke签名3. 调用C++函数方法二:使用C++/CLI作为桥接1. 创建C++/CL

Python中pywin32 常用窗口操作的实现

《Python中pywin32常用窗口操作的实现》本文主要介绍了Python中pywin32常用窗口操作的实现,pywin32主要的作用是供Python开发者快速调用WindowsAPI的一个... 目录获取窗口句柄获取最前端窗口句柄获取指定坐标处的窗口根据窗口的完整标题匹配获取句柄根据窗口的类别匹配获取句

利用Python打造一个Excel记账模板

《利用Python打造一个Excel记账模板》这篇文章主要为大家详细介绍了如何使用Python打造一个超实用的Excel记账模板,可以帮助大家高效管理财务,迈向财富自由之路,感兴趣的小伙伴快跟随小编一... 目录设置预算百分比超支标红预警记账模板功能介绍基础记账预算管理可视化分析摸鱼时间理财法碎片时间利用财

Python中的Walrus运算符分析示例详解

《Python中的Walrus运算符分析示例详解》Python中的Walrus运算符(:=)是Python3.8引入的一个新特性,允许在表达式中同时赋值和返回值,它的核心作用是减少重复计算,提升代码简... 目录1. 在循环中避免重复计算2. 在条件判断中同时赋值变量3. 在列表推导式或字典推导式中简化逻辑

python处理带有时区的日期和时间数据

《python处理带有时区的日期和时间数据》这篇文章主要为大家详细介绍了如何在Python中使用pytz库处理时区信息,包括获取当前UTC时间,转换为特定时区等,有需要的小伙伴可以参考一下... 目录时区基本信息python datetime使用timezonepandas处理时区数据知识延展时区基本信息

Python位移操作和位运算的实现示例

《Python位移操作和位运算的实现示例》本文主要介绍了Python位移操作和位运算的实现示例,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友们下面随着小编来一... 目录1. 位移操作1.1 左移操作 (<<)1.2 右移操作 (>>)注意事项:2. 位运算2.1