使用Matplotlib子图展示卷积神经网络中间特征图层

本文主要是介绍使用Matplotlib子图展示卷积神经网络中间特征图层,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

以下拿 fashion_mninst 来举例

import tensorflow as tf
import matplotlib as plt
from tensorflow.keras.datasets import fashion_mnist(x_train, y_train), (x_test, y_test) = fashion_mnist.load_data()
# 预处理函数
def data_scale(x, y):x = tf.cast(x, tf.float32)x = x / 255.0x = tf.reshape(x, (x.shape[0], x.shape[1], 1))x = tf.image.resize_with_pad(image=x, target_height=224,target_width=224)return x, y
# 获取 fashion_mnist 数据集
train_db = tf.data.Dataset.from_tensor_slices((x_train,y_train)).shuffle(20).map(data_scale).batch(128)# 获取一组数据
X = next(iter(train_db))[0][0]
# 将这组数据输入训练好的模型,并打印中间层特征图def show(X, k,i, name):print(X.shape)X = tf.expand_dims(X, axis=-1)# 将每个图转换为 200 * 200的像素,但这个不是图大小X = tf.image.resize(X,  [200,200], method='bilinear')X_ = tf.squeeze(X)t = plt.subplot(8, 4,  4*k + i + 1)# 添加子图的标题t.title.set_text('layer %s:'%k + name + '-' + str(i))plt.imshow(X_)X = tf.expand_dims(X, axis=0)# 设置图纸大小
plt.figure(figsize=(15, 15))
# 打印前 8 层的部分特征图
for k,blk in enumerate(net.layers[0:8]):print(blk.name,'itput shape:\t',X.shape)
#     show(X[0,:,:,0])X = blk(X)print(blk.name, 'output shape:\t', X.shape)# 选择其中的四个通道for i in range(4):show(X[0,:,:,i], k, i, blk.name)
# 调整子图的间隔
left  = 0.125  # the left side of the subplots of the figure
right = 0.9    # the right side of the subplots of the figure
bottom = 0.1   # the bottom of the subplots of the figure
top = 0.9      # the top of the subplots of the figure
wspace = 0.2   # the amount of width reserved for blank space between subplots,# expressed as a fraction of the average axis width
hspace = 0.6   # the amount of height reserved for white space between subplots,# expressed as a fraction of the average axis heightplt.subplots_adjust(left=left, bottom=bottom, right=right, top=top,wspace=wspace, hspace=hspace)plt.show()

效果如下:
在这里插入图片描述
在这里插入图片描述

这篇关于使用Matplotlib子图展示卷积神经网络中间特征图层的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701760

相关文章

Python使用FastAPI实现大文件分片上传与断点续传功能

《Python使用FastAPI实现大文件分片上传与断点续传功能》大文件直传常遇到超时、网络抖动失败、失败后只能重传的问题,分片上传+断点续传可以把大文件拆成若干小块逐个上传,并在中断后从已完成分片继... 目录一、接口设计二、服务端实现(FastAPI)2.1 运行环境2.2 目录结构建议2.3 serv

Spring Security简介、使用与最佳实践

《SpringSecurity简介、使用与最佳实践》SpringSecurity是一个能够为基于Spring的企业应用系统提供声明式的安全访问控制解决方案的安全框架,本文给大家介绍SpringSec... 目录一、如何理解 Spring Security?—— 核心思想二、如何在 Java 项目中使用?——

springboot中使用okhttp3的小结

《springboot中使用okhttp3的小结》OkHttp3是一个JavaHTTP客户端,可以处理各种请求类型,比如GET、POST、PUT等,并且支持高效的HTTP连接池、请求和响应缓存、以及异... 在 Spring Boot 项目中使用 OkHttp3 进行 HTTP 请求是一个高效且流行的方式。

Java使用Javassist动态生成HelloWorld类

《Java使用Javassist动态生成HelloWorld类》Javassist是一个非常强大的字节码操作和定义库,它允许开发者在运行时创建新的类或者修改现有的类,本文将简单介绍如何使用Javass... 目录1. Javassist简介2. 环境准备3. 动态生成HelloWorld类3.1 创建CtC

使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解

《使用Python批量将.ncm格式的音频文件转换为.mp3格式的实战详解》本文详细介绍了如何使用Python通过ncmdump工具批量将.ncm音频转换为.mp3的步骤,包括安装、配置ffmpeg环... 目录1. 前言2. 安装 ncmdump3. 实现 .ncm 转 .mp34. 执行过程5. 执行结

Java使用jar命令配置服务器端口的完整指南

《Java使用jar命令配置服务器端口的完整指南》本文将详细介绍如何使用java-jar命令启动应用,并重点讲解如何配置服务器端口,同时提供一个实用的Web工具来简化这一过程,希望对大家有所帮助... 目录1. Java Jar文件简介1.1 什么是Jar文件1.2 创建可执行Jar文件2. 使用java

C#使用Spire.Doc for .NET实现HTML转Word的高效方案

《C#使用Spire.Docfor.NET实现HTML转Word的高效方案》在Web开发中,HTML内容的生成与处理是高频需求,然而,当用户需要将HTML页面或动态生成的HTML字符串转换为Wor... 目录引言一、html转Word的典型场景与挑战二、用 Spire.Doc 实现 HTML 转 Word1

Java中的抽象类与abstract 关键字使用详解

《Java中的抽象类与abstract关键字使用详解》:本文主要介绍Java中的抽象类与abstract关键字使用详解,本文通过实例代码给大家介绍的非常详细,感兴趣的朋友跟随小编一起看看吧... 目录一、抽象类的概念二、使用 abstract2.1 修饰类 => 抽象类2.2 修饰方法 => 抽象方法,没有

MyBatis ParameterHandler的具体使用

《MyBatisParameterHandler的具体使用》本文主要介绍了MyBatisParameterHandler的具体使用,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参... 目录一、概述二、源码1 关键属性2.setParameters3.TypeHandler1.TypeHa

Spring 中的切面与事务结合使用完整示例

《Spring中的切面与事务结合使用完整示例》本文给大家介绍Spring中的切面与事务结合使用完整示例,本文通过实例代码给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考... 目录 一、前置知识:Spring AOP 与 事务的关系 事务本质上就是一个“切面”二、核心组件三、完