Peter算法小课堂—背包问题

2024-02-12 04:36

本文主要是介绍Peter算法小课堂—背包问题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 我们已经学过好久好久的动态规划了,动态规划_Peter Pan was right的博客-CSDN博客

那么,我用一张图片来概括一下背包问题。

大家有可能比较疑惑,优化决策怎么优化呢?答案是,滚动数组,一个神秘而简单的东西。

01背包

题目:小偷来你家,他带的包只能装c斤的财务。你家有n种财务,分别重w1、w2......wn斤,价值分别为v1、v2......,请输出能拿走的最大总价值?

大家思考一下状态定义和状态转移方程。

额……

状态定义

f[i][j]:用前i个物品,每个物品只能选或不选,满足重量和小于等于j的所有选法中,价值最高的那个方案。最终答案:f[n][c]

状态转移方程

首先,我们分两种情况讨论:1.选i   2.不选i

1。 此时我们重量和会变小w[i],但是价值会增加v[i],f[i][j]=f[i-1][j-w[i]]+v[i]

2。 此时物品数减1,f[i][j]=f[i-1][j]

最后,再取最大值,得到状态转移方程:f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+v[i])

代码①

for(int i=1;i<=n;i++) cin>>w[i]>>v[i];
for(int i=1;i<=n;++i){for(int j=1;j<=c;++j){if(w[i]>j) f[i][j]=f[i-1][j];else f[i][j]=max(f[i-1][j],f[i-1][j-w[i]]+v[i]);}
}
cout<<f[n][c]<<endl;

有点费空间,要开滚动数组

代码②

滚动数组,给大家看个图

我们发现,dp[i][j]这一格,只需要i-1这一行,i-2、i-3……都不需要。题目如果并没有要求中间的状态(比如输出背包的方案),我们就可以将其省略来节省空间的使用。所以我们可以只用一维数组dp[j]来记录数据dp[i][j]的状态,在更新的过程中不断用新的数据dp[j] (dp[i][j]) 覆盖掉旧的数据dp[j](dp[i-1][j])。大家听懂了吗???

代码呢?

#include <bits/stdc++.h>
using namespace std;
const int MAXC=2009;
int n,c,w,v,f[MAXC];
int main(){cin>>c>>n;for(int i=1;i<=n;i++){cin>>w>>v;for(int j=c;j>=w;j--)f[j]=max(f[j],f[j-w]+v);}cout<<f[c]<<endl;return 0;
}

大家可能会疑惑,为什么第二层循环要倒着推啊,我给出一个解释。我们每次计算dp[j] (即dp[i][j]) 的时候都会需要dp[j-w[i]] (即dp[i-1][j-w[i]])的值。所以如果我们正序计算,那么dp[j-w[i]]就已经更新了 (即用过之前的背包了),与每个背包只能用1次不符。那么,这不就是完全背包要的吗?

完全背包

题目:小偷来你家,他带的包只能装c斤的财务。你家有n种财务,每种数量无限多,分别重w1、w2......wn斤,价值分别为v1、v2......,请输出能拿走的最大总价值?

题解请看01背包,这里只给出代码

cin>>c>>n;
for(int i=1;i<=n;i++){cin>>w>>v;for(int j=w;j<=c;j++)f[j]=max(f[j],f[j-w]+v);
}
cout<<f[c]<<endl;

分组背包

分组01与普通01的区别就是,分组01有两组策略:1.选择本组的某一件 2.一件不选

所以说,分组背包编码很麻烦

#include <bits/stdc++.h>
using namespace std;
typedef long long ll;
const ll G=19;
const ll N=39;
const ll MAXV=209;
ll c,n,g,f[MAXV];
vector<ll> w[G],v[G]; 
int main(){cin>>c>>n>>g;for(ll i=1;i<=n;i++){ll ww,vv,p;cin>>ww>>vv>>p;w[p].push_back(ww);v[p].push_back(vv);}for(ll i=0;i<=g;i++){//枚举组号for(ll j=c;j>=0;j--){//枚举载重for(ll k=0;k<w[i].size();k++){//枚举物品if(j>=w[i][k]) f[j]=max(f[j],f[j-w[i][k]]+v[i][k]);}}}cout<<f[c]<<endl;return 0;
}

多重背包

多重背包怎么办呢,这里,我们要采用二进制拆分。

就是……这样

void bb01(int w,int v){for(int j=c;j>=w;j--)f[j]=max(f[j],f[j-w]+v);
}
int main(){cin>>n>>c;for(int i=1;i<=n;i++){cin>>w>>v>>s;for(int k=1;k<=s;s-=k;k*=2) bb01(k*w,k*v);if(s) bb01(s*w,s*v);}cout<<f[c]<<endl;return 0;
}

简单吧,其实为什么这里我都没有进行仔细的讲解,是因为……不会,再多思考思考01背包和图片。

混合背包

大家试着写写。大家有兴趣的话可以去往上搜搜“背包九讲”。

希望这些对大家有用,三连必回

这篇关于Peter算法小课堂—背包问题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/701680

相关文章

解决tomcat启动时报Junit相关错误java.lang.ClassNotFoundException: org.junit.Test问题

《解决tomcat启动时报Junit相关错误java.lang.ClassNotFoundException:org.junit.Test问题》:本文主要介绍解决tomcat启动时报Junit相... 目录tomcat启动时报Junit相关错误Java.lang.ClassNotFoundException

解决Maven项目报错:failed to execute goal org.apache.maven.plugins:maven-compiler-plugin:3.13.0的问题

《解决Maven项目报错:failedtoexecutegoalorg.apache.maven.plugins:maven-compiler-plugin:3.13.0的问题》这篇文章主要介... 目录Maven项目报错:failed to execute goal org.apache.maven.pl

MySQL主从同步延迟问题的全面解决方案

《MySQL主从同步延迟问题的全面解决方案》MySQL主从同步延迟是分布式数据库系统中的常见问题,会导致从库读取到过期数据,影响业务一致性,下面我将深入分析延迟原因并提供多层次的解决方案,需要的朋友可... 目录一、同步延迟原因深度分析1.1 主从复制原理回顾1.2 延迟产生的关键环节二、实时监控与诊断方案

SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法

《SQLyog中DELIMITER执行存储过程时出现前置缩进问题的解决方法》在SQLyog中执行存储过程时出现的前置缩进问题,实际上反映了SQLyog对SQL语句解析的一个特殊行为,本文给大家介绍了详... 目录问题根源正确写法示例永久解决方案为什么命令行不受影响?最佳实践建议问题根源SQLyog的语句分

解决IDEA报错:编码GBK的不可映射字符问题

《解决IDEA报错:编码GBK的不可映射字符问题》:本文主要介绍解决IDEA报错:编码GBK的不可映射字符问题,具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,望不吝赐教... 目录IDEA报错:编码GBK的不可映射字符终端软件问题描述原因分析解决方案方法1:将命令改为方法2:右下jav

MyBatis模糊查询报错:ParserException: not supported.pos 问题解决

《MyBatis模糊查询报错:ParserException:notsupported.pos问题解决》本文主要介绍了MyBatis模糊查询报错:ParserException:notsuppo... 目录问题描述问题根源错误SQL解析逻辑深层原因分析三种解决方案方案一:使用CONCAT函数(推荐)方案二:

Redis 热 key 和大 key 问题小结

《Redis热key和大key问题小结》:本文主要介绍Redis热key和大key问题小结,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录一、什么是 Redis 热 key?热 key(Hot Key)定义: 热 key 常见表现:热 key 的风险:二、

IntelliJ IDEA 中配置 Spring MVC 环境的详细步骤及问题解决

《IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决》:本文主要介绍IntelliJIDEA中配置SpringMVC环境的详细步骤及问题解决,本文分步骤结合实例给大... 目录步骤 1:创建 Maven Web 项目步骤 2:添加 Spring MVC 依赖1、保存后执行2、将新的依赖

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Spring Boot中JSON数值溢出问题从报错到优雅解决办法

《SpringBoot中JSON数值溢出问题从报错到优雅解决办法》:本文主要介绍SpringBoot中JSON数值溢出问题从报错到优雅的解决办法,通过修改字段类型为Long、添加全局异常处理和... 目录一、问题背景:为什么我的接口突然报错了?二、为什么会发生这个错误?1. Java 数据类型的“容量”限制