【数据结构与算法】【小白也能学的数据结构与算法】迭代算法专题

2024-02-11 17:52

本文主要是介绍【数据结构与算法】【小白也能学的数据结构与算法】迭代算法专题,希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

 🎉🎉欢迎光临🎉🎉

🏅我是苏泽,一位对技术充满热情的探索者和分享者。🚀🚀

🌟特别推荐给大家我的最新专栏《数据结构与算法:初学者入门指南》📘📘

本专栏纯属为爱发电永久免费!!!

这是苏泽的个人主页可以看到我其他的内容哦👇👇

努力的苏泽icon-default.png?t=N7T8http://suzee.blog.csdn.net

目录

迭代算法,这是一种解决问题的强大工具。通过迭代,我们可以重复应用一组规则或操作来解决复杂的问题。本文将从基础的迭代概念开始,逐步介绍迭代算法的不同应用和技巧

1. 迭代的基础概念

2. 迭代的高级技巧

3. 迭代算法的应用


迭代算法,这是一种解决问题的强大工具。通过迭代,我们可以重复应用一组规则或操作来解决复杂的问题。本文将从基础的迭代概念开始,逐步介绍迭代算法的不同应用和技巧

1. 迭代的基础概念

在计算机科学中,迭代是指通过多次重复应用一组规则或操作来解决问题的方法。它通常与循环结构紧密相关,通过迭代可以逐步改变问题的状态,直到达到所需的结果。

例如,考虑计算一个数组中所有元素的和。使用迭代的方法,我们可以通过循环遍历数组中的每个元素,并将其累加到一个变量中,最终得到总和。

下面是一个使用迭代计算数组元素和的示例代码:

def compute_sum(array):total = 0for num in array:total += numreturn total# 测试代码
my_array = [1, 2, 3, 4, 5]
result = compute_sum(my_array)
print("The sum of the array is:", result)

在上述示例中,我们定义了一个compute_sum函数,接受一个数组作为输入,并使用迭代的方法计算数组元素的总和。通过循环遍历数组中的每个元素,并将其累加到变量total中,我们最终得到了数组的总和。

2. 迭代的高级技巧

除了基本的迭代概念外,还有一些高级的迭代技巧可以帮助我们解决更复杂的问题。以下是其中几种常见的技巧:

双指针迭代:在某些情况下,我们可以使用两个指针分别指向序列中的不同位置,并根据特定的规则移动这些指针来解决问题。例如,在查找排序数组中的两个数之和等于目标值的问题中,我们可以使用两个指针从序列的两端向中间移动。

def two_sum(nums, target):left = 0right = len(nums) - 1while left < right:sum = nums[left] + nums[right]if sum == target:return [nums[left], nums[right]]elif sum < target:left += 1else:right -= 1return []# 测试代码
nums = [2, 7, 11, 15]
target = 9
result = two_sum(nums, target)
print("The two numbers with sum equal to", target, "are:", result)

在上述示例中,我们定义了一个two_sum函数,接受一个排序数组nums和目标值target作为输入。我们使用两个指针leftright分别指向数组的开头和末尾,并根据特定的规则移动这些指针。

如果指针所指的两个数之和等于目标值target,则返回这两个数。如果和小于目标值,则将left指针向右移动一位;如果和大于目标值,则将right指针向左移动一位。通过这种方式,我们逐步缩小搜索范围,直到找到满足条件的两个数或搜索范围为空。

 

迭代与递归的结合:有时候,我们可以将迭代与递归结合使用,以便更好地解决问题。例如,在树的遍历问题中,我们可以使用迭代的方式来模拟递归的过程,从而避免使用递归函数的系统调用开销。

class TreeNode:def __init__(self, value):self.val = valueself.left = Noneself.right = Nonedef preorder_traversal(root):if root is None:return []stack = []result = []node = rootwhile node or stack:while node:result.append(node.val)stack.append(node)node = node.leftnode = stack.pop()node = node.rightreturn result# 测试代码
root = TreeNode(1)
root.right = TreeNode(2)
root.right.left = TreeNode(3)result = preorder_traversal(root)
print("The preorder traversal of the tree is:", result)

在上述示例中,我们定义了一个TreeNode类来表示树的节点,其中包含值val、左子节点left和右子节点right

我们使用迭代的方式来实现树的前序遍历。首先,我们定义一个栈stack用于保存待访问的节点。我们从根节点开始,将根节点入栈。然后,不断迭代执行以下步骤:

  • 弹出栈顶节点,并将其值添加到结果列表中。
  • 将栈顶节点的右子节点入栈(如果存在)。
  • 将栈顶节点的左子节点入栈(如果存在)。

通过这种方式,我们模拟了递归的过程,同时避免了使用递归函数的系统调用开销。

 

迭代与动态规划:迭代与动态规划经常结合使用,以解决一些具有最优子结构性质的问题。通过迭代计算和存储子问题的解,我们可以避免重复计算,提高算法效率。

def fibonacci(n):if n == 0:return 0if n == 1:return 1dp = [0] * (n + 1)dp[0] = 0dp[1] = 1for i in range(2, n + 1):dp[i] = dp[i - 1] + dp[i - 2]return dp[n]# 测试代码
n = 6
result = fibonacci(n)
print("The", n, "th Fibonacci number is:", result)

我们使用迭代的方式,通过动态规划来避免重复计算。

我们使用一个数组dp来存储计算过的斐波那契数。首先,我们初始化dp[0]dp[1]分别为0和1。然后,我们从dp[2]开始,通过迭代计算dp[i] = dp[i - 1] + dp[i - 2],直到计算到第n个斐波那契数dp[n]

通过这种方式,我们避免了重复计算,提高了算法效率。

3. 迭代算法的应用

迭代算法在各种数据结构和算法中都有广泛的应用。以下是一些常见的迭代算法应用:

  • 链表和数组的遍历:通过迭代,我们可以逐个访问链表或数组中的元素。

  • 图的遍历:通过迭代,我们可以访问图中的所有节点和边。

  • 排序算法:许多排序算法,如冒泡排序、插入排序和快速排序,都使用了迭代的思想。

  • 搜索算法:许多搜索算法,如深度优先搜索(DFS)和广度优先搜索(BFS),也使用了迭代的方法。

 

这篇关于【数据结构与算法】【小白也能学的数据结构与算法】迭代算法专题的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/700449

相关文章

小白也能轻松上手! 路由器设置优化指南

《小白也能轻松上手!路由器设置优化指南》在日常生活中,我们常常会遇到WiFi网速慢的问题,这主要受到三个方面的影响,首要原因是WiFi产品的配置优化不合理,其次是硬件性能的不足,以及宽带线路本身的质... 在数字化时代,网络已成为生活必需品,追剧、游戏、办公、学习都离不开稳定高速的网络。但很多人面对新路由器

Java设计模式---迭代器模式(Iterator)解读

《Java设计模式---迭代器模式(Iterator)解读》:本文主要介绍Java设计模式---迭代器模式(Iterator),具有很好的参考价值,希望对大家有所帮助,如有错误或未考虑完全的地方,... 目录1、迭代器(Iterator)1.1、结构1.2、常用方法1.3、本质1、解耦集合与遍历逻辑2、统一

Java中的雪花算法Snowflake解析与实践技巧

《Java中的雪花算法Snowflake解析与实践技巧》本文解析了雪花算法的原理、Java实现及生产实践,涵盖ID结构、位运算技巧、时钟回拨处理、WorkerId分配等关键点,并探讨了百度UidGen... 目录一、雪花算法核心原理1.1 算法起源1.2 ID结构详解1.3 核心特性二、Java实现解析2.

使用雪花算法产生id导致前端精度缺失问题解决方案

《使用雪花算法产生id导致前端精度缺失问题解决方案》雪花算法由Twitter提出,设计目的是生成唯一的、递增的ID,下面:本文主要介绍使用雪花算法产生id导致前端精度缺失问题的解决方案,文中通过代... 目录一、问题根源二、解决方案1. 全局配置Jackson序列化规则2. 实体类必须使用Long封装类3.

C++迭代器失效的避坑指南

《C++迭代器失效的避坑指南》在C++中,迭代器(iterator)是一种类似指针的对象,用于遍历STL容器(如vector、list、map等),迭代器失效是指在对容器进行某些操作后... 目录1. 什么是迭代器失效?2. 哪些操作会导致迭代器失效?2.1 vector 的插入操作(push_back,

Docker安装MySQL镜像的详细步骤(适合新手小白)

《Docker安装MySQL镜像的详细步骤(适合新手小白)》本文详细介绍了如何在Ubuntu环境下使用Docker安装MySQL5.7版本,包括从官网拉取镜像、配置MySQL容器、设置权限及内网部署,... 目录前言安装1.访问docker镜像仓库官网2.找到对应的版本,复制右侧的命令即可3.查看镜像4.启

Android NDK版本迭代与FFmpeg交叉编译完全指南

《AndroidNDK版本迭代与FFmpeg交叉编译完全指南》在Android开发中,使用NDK进行原生代码开发是一项常见需求,特别是当我们需要集成FFmpeg这样的多媒体处理库时,本文将深入分析A... 目录一、android NDK版本迭代分界线二、FFmpeg交叉编译关键注意事项三、完整编译脚本示例四

Springboot实现推荐系统的协同过滤算法

《Springboot实现推荐系统的协同过滤算法》协同过滤算法是一种在推荐系统中广泛使用的算法,用于预测用户对物品(如商品、电影、音乐等)的偏好,从而实现个性化推荐,下面给大家介绍Springboot... 目录前言基本原理 算法分类 计算方法应用场景 代码实现 前言协同过滤算法(Collaborativ

openCV中KNN算法的实现

《openCV中KNN算法的实现》KNN算法是一种简单且常用的分类算法,本文主要介绍了openCV中KNN算法的实现,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的... 目录KNN算法流程使用OpenCV实现KNNOpenCV 是一个开源的跨平台计算机视觉库,它提供了各

Python 迭代器和生成器概念及场景分析

《Python迭代器和生成器概念及场景分析》yield是Python中实现惰性计算和协程的核心工具,结合send()、throw()、close()等方法,能够构建高效、灵活的数据流和控制流模型,这... 目录迭代器的介绍自定义迭代器省略的迭代器生产器的介绍yield的普通用法yield的高级用法yidle