二阶系统的迹-行列式平面方法(trace-determinant methods for 2nd order system)

本文主要是介绍二阶系统的迹-行列式平面方法(trace-determinant methods for 2nd order system),希望对大家解决编程问题提供一定的参考价值,需要的开发者们随着小编来一起学习吧!

让我们再次考虑二阶线性系统
d Y d t = A Y \frac{d\mathbf{Y}}{dt}=A\mathbf{Y} dtdY=AY

我们已经知道,分析这种二阶系统。最主要的是注意它的特征值情形。
在这里插入图片描述
(此处没有重根的情形,所有是partial)

而特征值,也就是系统矩阵特征方程的根,和而系统矩阵是直接相关的。
我们知道,在线性代数理论中,矩阵A的迹Trace(A)(简称Tr)是A的各个特征值之和,而矩阵A的行列式determinant(A)(简称det)为特征值的积。
这里我们只考虑二阶系统。

1. 利用矩阵的迹-行列式求特征值

因此若A的特征值为 λ 1 , λ 2 \lambda_1, \lambda_2 λ1,λ2 则有
λ 1 + λ 2 = T r ( A ) λ 1 ∗ λ 2 = d e t ( A ) \lambda_1 + \lambda_2= Tr(A)\\ \lambda_1 * \lambda_2=det(A) λ1+λ2=Tr(A)λ1λ2=det(A)
上过初中的朋友,如果考虑到特征值就是系统矩阵特征方程的根,会不会让你回忆起韦达定理: 对于方程 a λ 2 + b λ + c = 0 a \lambda^2+b\lambda+c=0 aλ2++c=0:
λ 1 + λ 2 = − b a λ 1 ∗ λ 2 = c a \lambda_1 + \lambda_2= -\frac{b}{a}\\ \lambda_1 * \lambda_2=\frac{c}{a} λ1+λ2=abλ1λ2=ac
利用 T r ( A ) 和 d e t ( A ) 和 a , b , c Tr(A)和det(A)和a, b, c Tr(A)det(A)a,b,c的关系, 再根据二次方程求根公式, 有
λ 1 , 2 = T r ± T r 2 − 4 ∗ d e t 2 \lambda_{1,2} = \frac{Tr±\sqrt{Tr^2-4*det}}{2} λ1,2=2Tr±Tr24det
A被省略掉了
因此, 我们利用矩阵A的迹-行列式, 直接求系统特征值, 进而判断系统解的形态, 而不必列出特征方程, 这是一个比较巧妙的方法.
下面, 我们介绍一个必杀技, 如何一眼秒杀解的形态.

2. 利用矩阵的迹-行列式直接分析系统解的形态

在这里插入图片描述T代表trace,D代表行列式.
这个图你一看1应该有点感觉了,下面我来讲一下这个图.
回顾上面的公式
λ 1 , 2 = T ± T 2 − 4 ∗ D 2 \lambda_{1,2} = \frac{T±\sqrt{T^2-4*D}}{2} λ1,2=2T±T24D

2.1 两个不同实根 T 2 − 4 ∗ D > 0 T^2-4*D>0 T24D>0

我们看到 T 2 − 4 ∗ D > 0 T^2-4*D>0 T24D>0的情况,也就像下面图的红色区域,代表系统有两个不一样的实特征值
在这里插入图片描述由于
λ 1 + λ 2 = T λ 1 ∗ λ 2 = D \lambda_1 + \lambda_2= T\\ \lambda_1 * \lambda_2=D λ1+λ2=Tλ1λ2=D
因此当 T < 0 , D > 0 T<0, D>0 T<0,D>0,代表系统两个负特征值,此时平衡点为sink
T < 0 , D < 0 T<0, D<0 T<0,D<0,代表系统两个特征值一正一负,此时平衡点为saddle
T < 0 , D = 0 T<0, D=0 T<0,D=0,代表系统两个特征值一个负一个0,此时平衡点为node, 系统只有一个直线解, 相图的形状大概长这样
在这里插入图片描述负特征值对应的一个特征空间 0特征值对应另外一个特征空间
这两个特征空间的直和构成整个相平面
如果系统的初始状态落在负特征值对应的特征空间上,则会沿着特征向量的方向趋近于原点/平衡点
如果系统的初始状态落在0特征值对应的特征空间上,它就不动了,换言之, 0特征值对应的特征空间构成了系统的一个不变集,每个点都是平衡点(学过非线性系统的同学们!)

如果初始状态落在其他地方,由于线性代数告诉我们,初始状态可以在两个分量上投影,对应负特征值方向的分量会收敛为0, 而对应0特征值方向的分量则不动了。

T > 0 T>0 T>0的情况也可以类似的推出来

2.2 一对纯虚根 T 2 − 4 ∗ D < 0 T^2-4*D<0 T24D<0

在这里插入图片描述这个就不用多说了吧
由于两个根实部相同
T > 0 T>0 T>0必定是不稳定的spiral source
T < 0 T<0 T<0必定是稳定的spiral sink
T = 0 T=0 T=0则是无阻尼振荡的螺旋center

2.3 最抽象的情况 重根 T 2 − 4 ∗ D = 0 T^2-4*D=0 T24D=0

这在迹-行列式平面中表现为一条二次曲线
在这里插入图片描述显然, T > 0 T>0 T>0必定是不稳定的node
T < 0 T<0 T<0必定是稳定的node
T = 0 T=0 T=0就是原点,啥也没有

综上所述,你学会trace-determinant method了吗?

这篇关于二阶系统的迹-行列式平面方法(trace-determinant methods for 2nd order system)的文章就介绍到这儿,希望我们推荐的文章对编程师们有所帮助!



http://www.chinasem.cn/article/697660

相关文章

Java 中的 @SneakyThrows 注解使用方法(简化异常处理的利与弊)

《Java中的@SneakyThrows注解使用方法(简化异常处理的利与弊)》为了简化异常处理,Lombok提供了一个强大的注解@SneakyThrows,本文将详细介绍@SneakyThro... 目录1. @SneakyThrows 简介 1.1 什么是 Lombok?2. @SneakyThrows

判断PyTorch是GPU版还是CPU版的方法小结

《判断PyTorch是GPU版还是CPU版的方法小结》PyTorch作为当前最流行的深度学习框架之一,支持在CPU和GPU(NVIDIACUDA)上运行,所以对于深度学习开发者来说,正确识别PyTor... 目录前言为什么需要区分GPU和CPU版本?性能差异硬件要求如何检查PyTorch版本?方法1:使用命

Qt实现网络数据解析的方法总结

《Qt实现网络数据解析的方法总结》在Qt中解析网络数据通常涉及接收原始字节流,并将其转换为有意义的应用层数据,这篇文章为大家介绍了详细步骤和示例,感兴趣的小伙伴可以了解下... 目录1. 网络数据接收2. 缓冲区管理(处理粘包/拆包)3. 常见数据格式解析3.1 jsON解析3.2 XML解析3.3 自定义

SpringMVC 通过ajax 前后端数据交互的实现方法

《SpringMVC通过ajax前后端数据交互的实现方法》:本文主要介绍SpringMVC通过ajax前后端数据交互的实现方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价... 在前端的开发过程中,经常在html页面通过AJAX进行前后端数据的交互,SpringMVC的controll

Java中的工具类命名方法

《Java中的工具类命名方法》:本文主要介绍Java中的工具类究竟如何命名,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录Java中的工具类究竟如何命名?先来几个例子几种命名方式的比较到底如何命名 ?总结Java中的工具类究竟如何命名?先来几个例子JD

Spring Security自定义身份认证的实现方法

《SpringSecurity自定义身份认证的实现方法》:本文主要介绍SpringSecurity自定义身份认证的实现方法,下面对SpringSecurity的这三种自定义身份认证进行详细讲解,... 目录1.内存身份认证(1)创建配置类(2)验证内存身份认证2.JDBC身份认证(1)数据准备 (2)配置依

python获取网页表格的多种方法汇总

《python获取网页表格的多种方法汇总》我们在网页上看到很多的表格,如果要获取里面的数据或者转化成其他格式,就需要将表格获取下来并进行整理,在Python中,获取网页表格的方法有多种,下面就跟随小编... 目录1. 使用Pandas的read_html2. 使用BeautifulSoup和pandas3.

Spring 中的循环引用问题解决方法

《Spring中的循环引用问题解决方法》:本文主要介绍Spring中的循环引用问题解决方法,本文给大家介绍的非常详细,对大家的学习或工作具有一定的参考借鉴价值,需要的朋友参考下吧... 目录什么是循环引用?循环依赖三级缓存解决循环依赖二级缓存三级缓存本章来聊聊Spring 中的循环引用问题该如何解决。这里聊

Java学习手册之Filter和Listener使用方法

《Java学习手册之Filter和Listener使用方法》:本文主要介绍Java学习手册之Filter和Listener使用方法的相关资料,Filter是一种拦截器,可以在请求到达Servl... 目录一、Filter(过滤器)1. Filter 的工作原理2. Filter 的配置与使用二、Listen

Pandas统计每行数据中的空值的方法示例

《Pandas统计每行数据中的空值的方法示例》处理缺失数据(NaN值)是一个非常常见的问题,本文主要介绍了Pandas统计每行数据中的空值的方法示例,具有一定的参考价值,感兴趣的可以了解一下... 目录什么是空值?为什么要统计空值?准备工作创建示例数据统计每行空值数量进一步分析www.chinasem.cn处